簡易檢索 / 詳目顯示

研究生: 李佩宜
論文名稱: 探討自行車隨卡鞋在不同阻力下對下肢肌群活化的影響
Effect of Clipless Cycling Shoes with Different Resistances on the Activation of Lower Limb Muscles
指導教授: 邱文信
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2015
畢業學年度: 103
語文別: 中文
中文關鍵詞: 隨卡鞋肌電圖學下肢肌群
外文關鍵詞: Clipless cycling shoes, electromyography, lower limb
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:本研究之主要目的在探討一般運動鞋、卡鞋和隨卡鞋在兩種不同阻力(60瓦和120瓦)的下肢肌群活化情形。方法:參與者為12名20歲以上健康男性,透過無線肌電儀器以1500Hz頻率擷取受試者騎乘30秒的肌電訊號,再經由SPSS19.0統計軟體,以無母數Friedman進行比較,若達顯著再以曼惠特尼法進行兩兩比較。統計水準為α=.05。結果:卡鞋和一般鞋在60rpm時的脛前肌有顯著差異;在分期比較中,卡鞋和一般鞋在120rpm加速期的股外側肌和股二頭肌有顯著差異;卡鞋和隨卡鞋在120rpm加速期的股外側肌有顯著差異。建議:廠商可依下肢肌肉用力情形進一步修正隨卡鞋的設計。


    Purpose:The purpose of this study is to compare the activation on lower limb muscles of three different shoes (sports shoes, clip cycling shoes, and clipless cycling shoes) in two levels of resistances (60w and 120w). Methods: Twelve healthy males (age: 28.2±4.5 years) have participated at this study. We recorded the EMG of vastus lateralis, biceps femoris, tibialis anterior, and gastrocnemius lateralis in three different shoes at two levels of resistances. All the data were assessed with non-parametric Friedman tests. Significance was set at p ≤ 0.05. Results:At the same pedaling cadence (60rpm), the muscle activation of the tibialis anterior of normal sports shoes was higher than that of clip cycling shoes significantly. At the downstroke phase of 120rpm, the muscles activation of the vastus lateralis and biceps femoris of normal sports shoes were lower than those of clip cycling shoes. Also, the muscle activation of the vastus lateralis of clipless cycling shoes was lower than that of clip cycling shoes. Suggestion: The result of the study can provide the manufacturer to correct the design of their clipless cycling shoes according to the muscle activation during the whole pedaling period.

    目次 口試委員與系主任簽字之論文通過簽名表 Ⅰ 論文授權書 Ⅱ 中文摘要 Ⅲ 英文摘要 Ⅳ 致謝詞 Ⅴ 目次 Ⅵ 圖次 Ⅸ 表次 Ⅹ 第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究問題 4 第三節 研究目的 4 第四節 研究範圍 4 第五節 操作性定義 5 第貳章 文獻探討 6 第一節 運動鞋、自行車專用卡鞋與隨卡鞋相關文獻 6 第二節 自行車運動鞋和下肢踩踏運動的關係 10 第三節 坡度阻力影響自行車騎乘姿勢與肌肉活化 14 第四節 文獻總結 16 第參章 研究方法 17 第一節 研究架構 17 第二節 研究對象 18 第三節 實驗時間與地點 18 第四節 實驗器材與設備 19 第五節 場地布置 20 第六節 實 驗步驟與流程 21 第七節 資料處理與分析 23 第八節 統計方法 23 第肆章 結果與討論 24 第一節 不同阻力與鞋類對下肢肌群的平均肌肉活化程度 24 第二節 不同阻力與鞋類在不同分期的活化程度 28 第三節 不同鞋類在衝刺時的踩踏變化 34 第伍章 結論與建議 35 第一節 結論 40 第二節 建議 40 參考文獻 41 中文部分 41 英文部分 43 附錄一:參與研究同意書 47

    參考文獻
    中文部分
    王賢令(1998)。握把直徑對進行握旋動作時手部肌肉負荷之效應。未出版之碩士論文,臺灣科技大學管理研究所,台北市。
    余銘倫(2004)。軀幹角度對自行車騎乘舒適度之效應分析。未出版碩士論文,明志科技大學,新北市。
    宋雅偉、孫天瑜、蔡奕璽、寇恒靜(2010)。不同硬度的鞋底對人體行走中足底力值變化的影響。首都體育學院學報,6。取自http://big5.qikan.com/gate/big5/sdty.qikan.com/MagInfo.aspx?issn=1009-783X&year=2010&periodnum=6
    吳武政(2000)。以誘導式歸納途徑法探討自行車騎乘姿勢與車架尺寸之關係。未出版之碩士論文,大同大學,台北市。
    吳信典(1998)。虛擬實境對自行車人體動作實驗影響之研究。未出版碩士論文,成功大學,台南市。
    林俊宏(2005)。運動自行車專用鞋選用。財團法人鞋類暨運動休閒科技研發中心電子報。取自http://incubator.shoenet.org.tw/index.php?ID=48&MID=M0501
    邱新然(2010)。不同座管高度之腳踏車運動對下肢肌群肌肉活化程度與運動學之影響。未出版之碩士論文,國立台北教育大學,台北市。
    邱文信、林國斌、方俊喬、王智弘(2012)。探討自由車不同座管高度之下肢肌電訊號與足底壓力分佈差異。淡江體育期刊論文,15,42-51。
    徐文淵(2009)。自行車不同座椅高度對騎乘效率及下肢肌電訊號之影響。未出版碩士論文,國立體育大學,桃園縣。
    郭炳宏、鄭雅華(2010)。自行車車種與握把影響騎乘舒適度之初探。台灣感性學會研討會論文,307-312。
    張錚睿、羅懷保、相子元(2010)。不同騎乘姿勢對自行車踩踏力量之影響。華人運動生物力學期刊,2,48-56。
    張柏苓、吳堉光、相子元(2012)。不同阻力對自行車坐姿與站姿騎乘的影響。大專體育學刊,14,448-457。
    張維綱、傅麗蘭(2012)。腳踏車訓練對膝關節股內斜肌與股外側肌活化表現的影響。大專體育學刊,14,255-262。
    唐偉雄(2012)。鞋類對騎乘自行車下肢肌群之影響。出版之碩士論文,新竹教育大學,新竹市。
    陳明良、歐雅芬、涂瑞洪(2010)。隨卡鞋與布鞋對自行車踩踏速度之影響。運動科學暨休閒遊憩管理學術研討會論文集, 734-3。
    黃台生(2009)。公路自行車把手舒適度之研究。設計學報,14,51-71。
    黃英豪(2010)。以下肢肌電訊號探討踏車運動座墊位置。未出版碩士論文,國立臺灣師範大學,台北市。
    蔡宗晏、王進華(2007)。淺談肌電圖在運動科學中的應用。大專體育,90,155-161。
    鄭凱文(2007)。競賽型自行車手把之設計與分析。未出版碩士論文,大業大學,彰化縣。
    鍾印鈞(2007)。以把手壓力探討不同自行車種之把手設計研究。未出版碩士論文,大同大學,台北市。
    鍾承融(2007)肌肉疲勞與肌肉損傷對於肌電訊號反應變化之初探。嘉大體育健康休閒期刊,6,175-180。
    Dr. John MKC(2006)。美利達單車鞋之初體驗。精積鞋業。取自http://www.plus-excellent.com.tw/GuestBook/index.php?show=4
    Jenny(2012)。不用鎖就能固定在踏板上:隨卡鞋。單車時代。取自http://cyclingtime.com/tw/documents/2164

    英文部分
    Aldien, Y., Welcome, D., Rakheja, S., Dong, R., & Boileau, P. E. (2005). Contact pressure distribution at hand–handle interface: role of hand forces and handle size. Applied Ergonomics, 35, 267–286.
    Berry, M. B., Pollock, W. E., Van Nieuwenhuizen, K., & Brubaker, P. H. (1994). A comparison between aero and standard racing handlebars during prolonged exercise. International Journal of Sports Medicine, 15, 16-20.
    Brown, D. A., Kautz, S. A., & Dairaghi, C. A. (1996). Muscle activity patterns altered during pedaling at different body orientations. Journal of Biomechanics, 29, 1349-1356.
    Burke, E. R. (1981). Ulnar neuropathy in bicyclists. Physician and Sportsmedicine, 9, 53-56.
    Bertucci, W., Grappe, F., Girard, A., Betik, A., & Rouillon, J.D. (2005). Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling. Journal of Biomechanics, 38, 1003–1010
    Callaghan, M. J. (2005). Lower body problems and injury in cycling. Journal of Bodywork and Movement Therapies, 9, 226–236.
    Clarys, J. P., Alewaeters, K., & Zinzen, E. (2001). The influence of geographic variations on the muscular activity in selected sports movements. Journal of Electromyography and Kinesiology, 11, 451 - 457.
    Craig JR, A.B. (1960). Effects of position on expiratory reserve volume of the lungs. Journal of Applied Physiology, 15, 59-61.
    Caldwell, G.E., McCole, S.D., Hagberg, J.M., & Li, L. (1998). Pedal and crank kinetics in uphill cycling. Journal of Applied Biomechanics, 14, 245-259.
    Clarys, J.P., Alewaeters, K., & Zinzen, E. (2001). The influence of geographic variations on the muscular activity in selected sports movements. Journal of Electromyography and Kinesiology, 11, 451-457
    Duc, S., Bertucci, W., Pernin, J.N., & Grappe, F. (2008). Muscular activity during uphill cycling: Effect of slope, posture, hand grip position and constrained bicycle lateral sways. Journal of Electromyography and Kinesiology, 18, 116-127
    Dieen, J.H. Looze, M. P., Hermans, V.(2001).Effects of dynamic office chair on trunk kinematics, trunk extensor EMG and spinal shrinkage. Ergonomics,44,739-750.
    Donkers, P. C. M., Toussaint, H. M., Molenbroek , J. F. M., & Steenbekkers, L. P. A. (1993). Recommendations for the assessment and design of young children. Applied Ergonomics, 24, 109-118.
    Fonda, B., Panjan, A., Markovic, G., & Sarabon, N. (2011). Adjusted saddle position counteracts the modified muscle activation patterns during uphill cycling. Journal of Electromyography and Kinesiology, 21, 854-860
    Johnson, S., & Shultz, B. (1990). The physiologic effects of aerodynamic handlebars. Journal of Science and Cycling, 2, 9-12.
    Kolehmainen, I., Harms-Ringdahl, K., & Lanshammar, H. (1989). Cervical spine positions and load moments during bicycling with different handlebar positions. (4 ed., Vol. 2, pp. 105-110). Clinical Biomechanics.
    Kong, Y. K., & Lowe, B. D. (2006). Optimal cylindrical handle diameter for grip force tasks. International Journal of Industrial Ergonomic, 35, 495 - 507.
    Lynn, S. M. (1996). Scientific rationale and physiological basis for the use of closed kinetic chain exercise in the lower extremity. Journal of Sport Rehabilitation, 5, 2-12.
    Li, L., & Caldwell, G.E. (1998). Muscle coordination in cycling: Effect of surface incline and posture. Journal of Applied Physiology, 85, 927-934.
    Marras, W. S., Davis, K. G., & Granata, K. P. (1998). Trunk muscle activities during asymmetric twisting motions. Journal of Electromyography and Kinesiology, 8, 247-256.
    Mestdagh, K. (1998). Personal perspective: In search of an optimum cycling posture. Applied Ergonomics, 29, 325-334.
    Moseley, L., & Jeukendrup, A.E. (2001). The reliability of cycling efficiency. Medicine and Science in Sports and Exercise, 33(4), 621-627.
    Marsden, M., & Schwellnus, M. (2010). Lower back pain in cyclists: A review of epidemiology, pathomechanics and risk factors. International Sport Medicine Journal, 11, 216-225
    Nicolay, C. W., & Walker, A. L. (2005). Grip strength and endurance: Influences of anthropometric variation, hand dominance, and gender. International Journal of Industrial Ergonomics, 35, 605 - 618.
    Richard Davison R.C., David Swan, Damian Coleman & Steve Bird (2000). Correlates of simulated hill climb cycling performance. Journal of Sports Science, 18, 105-110.

    Rodrigo, R. B., Patria H., James C. & Andrew K. (2013). Pedal force effectiveness in Cycling: a review of constraints and training effects. Journal of Science Cycling, 2(1), 11-24.

    Rodrigo, R. B. (2012). Patellofemoral and tibiofemoral forces in cyclists and triathletes: effects of saddle height. Journal of Science Cycling, 1(1), 9-14.
    Sarabon, N., Fonda, B., & Markovic, G. (2011). Change of muscle activation patterns in uphill cycling of varying slope. European Journal of Applied Physiology. doi:10.1007/s00421-011-2236-1
    Salai, M., Brosh, T., Blankstein, A., Oran, A., & Chechik, A. (1999). Effect of changing the saddle angle on the incidence of low back pain in recreational bicyclists. British Journal of Sports Medicine, 33, 398-400

    William, M. B., Ahlem A. & Guillaume P. (2012). Analysis of the pedaling biomechanics of master’s cyclists: A preliminary study. Journal of Science Cycling, 1(2), 42-46.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE