研究生: |
陳恩湛 |
---|---|
論文名稱: |
具結構補強設計之撓性神經探針開發 Development of Flexible Neural Microprobe with Improved Structural Design |
指導教授: | 方維倫 |
口試委員: |
鄭裕庭
張兗君 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 神經探針 、聚對二甲苯 、電鍍鎳 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究製作出具有結構補強設計的撓性神經探針,並可用於記錄生物體神經電訊號。傳統金屬線以及玻璃探針多為單電極的設計,無法同時記錄多個神經細胞的訊號。微機電技術所開發的矽基材與高分子基材神經探針雖然可以製作高密度的電極陣列,但矽基材探針因其脆性在操作不當的情形下易斷裂,且容易誘發發炎反應造成生物體組織的傷害。高分子探針與生物體的協調性較好可減少發炎反應,但容易在穿刺過程中產生挫曲。
本研究提出以高分子材料聚對二甲苯為基材,並結合電鍍鎳製程製做一具有結構補強的撓性神經探針,使探針兼具撓性與足夠剛性。經由實驗證實,本研究製作的神經探針可順利穿刺軟膠並偵測到老鼠大腦的神經電訊號。
[1] K .E. Petersen, “Silicon as a Mechanical Material”, Proceedings of the IEEE, 70, pp 420-457, 1982.
[2] R. T. Howe, R.S. Muller, K.J. Gabriel, and W.S.N. Trimmer, IEEE spectrµm, 27, pp 29-35, 1990.
[3] 丁志明等, “微機電系統技術與應用”, 國科會精密儀器發展中心, 2003
[4] K. Najafi , “Solid-state microsensors for cortical nerve recordings” IEEE Eng. Med. Biol. Mag.1994, 13, 375-87
[5] E. M. Schmidt, M. J. Bak, and P. Christensen, 'Laser Exposure of Parylene-C Insulated Microelectrodes', Journal of Neuroscience Methods, 62 (1995), 89-92.
[6] M. E. Renato and Sabbatini, “Neurons and synapses: the history of its discovery,”Brain & Mind Magazine, 17, April-July 2003.
[7] M. Meister, L. Lagnado, and D. A. Baylor. “ Concerted signaling by retinal ganglion cells.” Science, 270, pp 1207-1210, 1995
[8] I. H. Brivanlou, D. K. Warland , and M. Meister, “ Mechanisms of concerted firing among retinal ganglion cells,” Neuron, 20, pp 527-539, 1998
[9] S. H. DeVries,” Correlated firing in rabbit retinal ganglion cells.” Journal of Neurophysiol, 81, pp 908-920, 1999
[10] http://163.16.28.248/bio/activelearner/37/ch37c4.html
[11] Wikipedia, http://en.wikipedia.org/wiki/Nervous_system
[12] http://www.dls.ym.edu.tw/neuroscience/cells_c.htm
[13] http://webspace.ship.edu/cgboer/theneuron.html
[14] http://life.nthu.edu.tw/~g864264/Neuroscience/neuron/Potential.html
[15] K. D. Wise, D. J. Anderson, J. F. Hetke, D. R. Kipke, and K. Najafi, “Wireless implantable microsystems: high-density electronic interfaces to the nervous system," Proceedings of the IEEE, vol. 92, p. 76, 2004
[16] P. K Campbell, K.E. Jones, R.J. Huber, K. W. Horch, and R.A. Normann, “Silicon-based, 3-Dimensional neural interface – manufacturing processes for an intracortical electrode array. IEEE Trans. Biomed. Eng. 1991, 38, 758-768.
[17] A. N. Badi, T.R. Kertesz, R.K. Gurgel, C. Shelton, and R.A. Normann, The Laryngoscope 113, 833–842 (2003).
[18] J. J. Burmeister, K. Moxon, and G. A. Gerhardt, 'Ceramic-Based Multisite Microelectrodes for Electrochemical Recordings', Analytical Chemistry, 72 (1999), 187-92.
[19] J. J. Burmeister, and G.A. Gerhardt, 'Ceramic-Based Multisite Microelectrode Arrays for in Vivo Electrochemical Recordings of Glutamate and Other Neurochemicals', TrAC Trends in Analytical Chemistry, 22 (2003), 498-502.
[20] J. J. Burmeister, F. Pomerleau, P. Huettl, C. R. Gash, C. E. Werner, J. P. Bruno, and G. A. Gerhardt, 'Ceramic-Based Multisite Microelectrode Arrays for Simultaneous Measures of Choline and Acetylcholine in Cns', Biosensors and Bioelectronics, 23 (2008), 1382-89.
[21] C.-W. Lin, Y.-T. Lee, C.-W. Chang, W.-L. Hsu, Y.-C. Chang, and W. Fang, Novel Glass Microprobe Arrays for Neural Recording, Biosens. Bioelectro, 2009, Vol. 25, pp. 475-481.
[22] Y.-T., Lee, C.-W. L, C.-M. Lin, S.-R. Yeh, Y.-C. Chang, and W.Fang. "A Pseudo 3d Glass Microprobe Array: Glass Microprobe with Embedded Silicon for Alignment and Electrical Interconnection During Assembly." Journal of Micromechanics and Microengineering 20, no. 2 (2010): 025014..
[23] Y.-T. Lee; Y.-C. Chang; W. Fang; , "Multi-electrode styles with novel sidewall electrode on glass microprobe implemented by Si-via structure," Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on , vol., no., pp.1043-1046, 23-27 Jan. 2011
[24] K. C. Cheung, K. Djupsund, Y. Dan and L. P. Lee, Implantable multichannel electrode array based on SOI technology. J. Microelectromech. Syst ., Vol. 12, no. 2, April 2003
[25] M.-F. Wang, M. Teimour, and Z. Babak, 'A Self-Assembled 3d Microelectrode Array', Journal of Micromechanics and Microengineering, 20 (2010), 035013.
[26] P. Norlin, M. Kindlundh, A. Mouroux, K. Yoshida, and U. G. Hofmann, “A 32-site neural recording probe fabricated by DRIE of SOI substrates“, Journal of Micromechanics and Microengineering, 12, pp. 414-419, 2002
[27] C. C. Wen, Y. T. Lee, S. R. Yeh, and W. Fang, “A novel neural recording probe with built-in load sensors,” IEEE sensors 2007
[28] M. A. Lebedev, and M. A. L. Nicolelis, 'Brain–Machine Interfaces: Past, Present and Future', Trends in Neurosciences, 29 (2006), 536-46.
[29] K. Cheung, 'Implantable Microscale Neural Interfaces', Biomedical Microdevices, 9 (2007), 923-38.
[30] S. Jeyakumar, C. M. David, and R. Kipke Daryl, 'A Finite-Element Model of the Mechanical Effects of Implantable Microelectrodes in the Cerebral Cortex', Journal of Neural Engineering, 2 (2005), 103.
[31] T. Stieglitz and M.Gross, “Flexible BIOMEMS with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems ,” Sensors and Actuators B, 83, pp. 8-14, 2002
[32] T. Shoji, S. Takafumi, M. Kunihiko, and F. Hiroyuki, '3d Flexible Multichannel Neural Probe Array', Journal of Micromechanics and Microengineering, 14 (2004), 104.
[33] D. Ziegler, T. Suzuki, and S. Takeuchi, 'Fabrication of Flexible Neural Probes with Built-in Microfluidic Channels by Thermal Bonding of Parylene', Microelectromechanical Systems, Journal of, 15 (2006), 1477-82.
[34] A. Mercanzini, K. Cheung, D. Buhl, M. Boers, A. Maillard, P. Colin, J. C. Bensadoun, A. Bertsch, A. Carleton, and P. Renaud, 'Demonstration of Cortical Recording and Reduced Inflammatory Response Using Flexible Polymer Neural Probes', in Micro Electro Mechanical Systems, 2007. MEMS. IEEE 20th International Conference on, 2007), pp. 573-76.
[35] C.H. Chen, S.C. Chuang, H.C. Su, W.L. Hsu, T.R. Yew, Y.C. Chang, S.R. Yeh, and D.J. Yao, “A three-dimensional flexible microprobe array for neural recording assembled through electrostatic actuation, “ Lab on a Chip, 11, pp1647-1655, 2011
[36] K. Lee, J. He, R. Clement, S. Massia, and B. Kim, “Biocompatible benzocyclobutene (BCB)-based neural implants with micro-fluidic channel,” Biosensors. and Bioelectronics, 20, pp. 404-407, 2004.
[37] T.-L. Ren, Y. Bing, J.-H. Lin, X.-M.Wu, L.-G. Wang, Y. Yang, and L.-T. Liu, 'A Mems-Based Flexible Electrode Array Using Composite Substrate', in Electron Devices and Solid-State Circuits (EDSSC), 2010 IEEE International Conference of, 2010), pp. 1-6.
[38] A. Altuna, G. Gabriel, L.M. de la Prida, M. Tijero, A. Guimer´a, J. Berganzo, R. Salido, R. Villa and L.J. Fern´andez, “SU-8-based microneedles for in vitro neural applications,” Journal of Micromechanics and Microengineering, 20, pp 64014-64019, 2010
[39] M. Tijero, G. Gabriel, J. Caro, A. Altuna, R. Hernández, R. Villa, J. Berganzo, F. J. Blanco, R. Salido, and L. J. Fernández, 'Su-8 Microprobe with Microelectrodes for Monitoring Electrical Impedance in Living Tissues', Biosensors and Bioelectronics, 24 (2009), 2410-16.
[40] K. -K Lee, J. He, A. Singh, S. Massia, G Ehteshami, B. Kim and G. Raupp, Polyimide-based intracortical neural implant with improved structural stiffness, J. Micromech. Microeng. 14, 2004
[41] Y. Kato, I. Saito, T. Hoshino, T. Suzuki, and K. Mabuchi, 'Preliminary Study of Multichannel Flexible Neural Probes Coated with Hybrid Biodegradable Polymer', in Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE, 2006), pp. 660-63.
[42] P. T. McCarthy, K. J. Otto, and M. P. Rao, 'Robust Penetrating Microelectrodes for Neural Interfaces Realized by Titanium Micromachining', Biomedical Microdevices, 13 (2011), 503-15.
[43] A. A. Fomani, R. R. Mansour, C. M. Florez-Quenguan, and P. L. Carlen, 'Development and Characterization of Multisite Three-Dimensional Microprobes for Deep Brain Stimulation and Recording', Microelectromechanical Systems, Journal of, 20 (2011), 1109-18.
[44] D. Egert, R. L. Peterson, and K. Najafi, 'Parylene Microprobes with Engineered Stiffness and Shape for Improved Insertion', in Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, 2011), pp. 198-201.
[45] http://en.wikipedia.org/wiki/Neuroprosthetics
[46] http://en.wikipedia.org/wiki/Brain%E2%80%93computer_interface
[47] Y. K. Song, D. A. Borton, S. Park, W. R. Patterson, C. W. Bull, F. Laiwalla, J. Mislow, J. D. Simeral, J. P. Donoghue, and A. V. Nurmikko, 'Active Microelectronic Neurosensor Arrays for Implantable Brain Communication Interfaces', Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 17 (2009), 339-45.
[48] D.M. Taylor, S. I. H. Tillery, and A. B. Schwartz, 'Direct Cortical Control of 3d Neuroprosthetic Devices', Science, 296 (2002), 1829-32.
[49] T. Suzuki, S. Takeuchi, D. Ziegler, O. Fukayama, Y. Morishita, D. Frutiger, K. Ishii, and K. Mabuchi, 'Development of Flexible Neural Probes and Their Application to Rat Brain Interfaces', in SICE 2004 Annual Conference, 2004), pp. 2377-80 vol. 3.
[50] W. M. Tsang, A. Stone, Z. Aldworth, D. Otten, A. I. Akinwande, T. Daniel, J. G. Hildebrand, R. B. Levine, and J. Voldman, 'Remote Control of a Cyborg Moth Using Carbon Nanotube-Enhanced Flexible Neuroprosthetic Probe', in Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International Conference on, 2010), pp. 39-42.
[51] J.-U. Meyer, 'Retina Implant—a Biomems Challenge', Sensors and Actuators A: Physical, 97–98 (2002), 1-9.
[52] http://www.cochlearamericas.com/
[53] http://www.nidcd.nih.gov/health/hearing/pages/coch.aspx/
[54] P. Limousin, P. Krack, P. Pollak, A. Benazzouz, C. Ardouin, D. Hoffmann, and A.-L. Benabid, 'Electrical Stimulation of the Subthalamic Nucleus in Advanced Parkinson's Disease', New England Journal of Medicine, 339 (1998), 1105-11.
[55] A. M. Lozano, J. Dostrovsky, R. Chen, and P. Ashby, 'Deep Brain Stimulation for Parkinson's Disease: Disrupting the Disruption', The Lancet Neurology, 1 (2002), 225-31.
[56] M. Han, and D. B. McCreery, 'Microelectrode Technologies for Deep Brain Stimulation Implantable Neural Prostheses 1', ed. by Elias Greenbaum and David ZhouSpringer US, 2009), pp. 195-219.
[57] S. F. Cogan, 'Neural Stimulation and Recording Electrodes', Annual Review of Biomedical Engineering, 10 (2008), 275-309
[58] E. T. McAdams, J. Jossinet, R. Subramanian, and R. G. E. McCauley, 'Characterization of Gold Electrodes in Phosphate Buffered Saline Solution by Impedance and Noise Measurements for Biological Applications', in Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE, 2006), pp. 4594-97.
[59] L. A. Geddes, and R. Roeder, 'Criteria for the Selection of Materials for Implanted Electrodes', Annals of Biomedical Engineering, 31
[60] W. Jensen, K. Yoshida, and U. G. Hofmann, 'In-Vivo Implant Mechanics of Flexible, Silicon-Based Acreo Microelectrode Arrays in Rat Cerebral Cortex', Biomedical Engineering, IEEE Transactions on, 53 (2006), 934-40.
[61] R.C. Hibbeler, Meschanics of Materials, 6th Ed., New Jersey, Prentice Hall, 2007
[62] http://www.upak.com.tw/product-1.htm