簡易檢索 / 詳目顯示

研究生: 胡恆達
Herng-Dar Hwu
論文名稱: 鹼可溶樹脂在乳化聚合之反應行為研究
Reaction Behavior Studies of Alkali Soluble Resin as a surfactant in the emulsion polymerization
指導教授: 李育德
Yu-Der Lee
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 135
中文關鍵詞: 高分子型乳化劑鹼可溶樹脂乳化聚合
外文關鍵詞: Polymeric Surfactant, Alkali Soluble Resin, Emulsion Polymerization
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是以鹼可溶壓本研究主要是以鹼可溶壓克力樹脂為高分子型乳化劑,針對SM、BMA、BA等不同單體行乳化聚合反應。研究中藉由批式反應進行乳化聚合動力學研究,並結合動力學分析、表面張力分析和接枝反應分析以瞭解本系統之反應行為。
    本研究首先針對鹼可溶樹脂結構進行分析,確認其結構為(SM)0.34 (AMS)0.28 (AA)0.38 ,並透過其水溶液界面特性分析,可以確認ASR在水溶液中形成微泡般的凝聚物,而其臨界濃度為1g/L至9.3g/L。實驗數據亦顯示ASR對於SM、MMA、EMA和BMA可以有效的穩定乳液,而且ASR除了吸附在乳液粒子上,並與單體發生接枝反應。另外經動力學分析發現,以ASR為乳化劑其對反應速率有Retarding效應。而一般乳化聚合反應的第二階段在本系統中並不存在,主要是因為乳液成核的階段由反應開始便一直進行,直到油滴消失為止。而乳液粒子數與ASR濃度成0.309次方關係,與起始劑濃度則成0.515次方關係。

    同時本研究在比較不同單體對於反應速率的影響,亦發現乳液粒子中的單體濃度和乳液粒徑大小會影響乳液平均自由基數(n)的大小,乳液粒徑愈小或單體濃度愈高者會使得自由基容易擴散出粒子,因此在粒子中單體濃度低之BMA 的n會較其他單體為高,同時實驗數據亦顯示接枝反應除了會受ASR或起始劑濃度影響外,其受單體影響為最大,親油性單體如BMA,SM 的接枝反應較親水性單體如MMA,EMA為高,其原因應是單體成核機制不同所造成。


    In this study, alkali soluble resin (ASR) was evaluated as a surfactant in emulsion polymerization of SM, MMA, EMA, BMA, and BA, respectively. Batch reaction was used to evaluate the reaction behaviors. Kinetic analysis, surface tension and alkali separation methods were employed to study the reaction behaviors.
    The structure of ASR was determined by using 13C NMR and pyrolyzes GC and the ASR structure was (SM)0.34 (AMS)0.28 (AA)0.38. The critical aggregation concentration of neutralized ASR was broad from 1g/L to 9.3g/L by measuring the surface tension of ASR aqueous solution. The results were found that ASR can effectively stabilize the monomer such as MMA, EMA, BMA and SM. The ASR not only plays a stabilizer in the emulsion polymerization but also grafts onto the polymer to retard the reaction rate. The retarding effect of ASR was also observed in this reaction, which formed a barrier layer around the particle and depressed the radical number in the particle. The interval II, growth of polymer particles in the absence of micelles, does not exist in this system because the particle nucleation period lasts until the disappearance of the droplets. The power dependencies of particle number on the ASR concentration and the initiator concentration are 0.309 and 0.515, respectively. It reconfirms that the coagulative nucleation mechanism and the longer nucleation period do exist by using ASR as the surfactant.

    Kinetic analysis indicated that the saturated monomer concentration within particle and the particle size have dominant effects on the average radical number per particle. The decreases of particle size or the increases of monomer concentration within the particle enhance the radical diffuse into the continuous phase and reduce the average number of radicals per particle. The above results also indicate that the grafting reaction onto ASR is proportional to the concentration of ASR and initiator. But the water solubility of monomer is the major factor that affects the grafting reaction. Low water solubility monomers favor micellar nucleation and enhance the grafting reaction onto ASR.

    謝誌 中文摘要 英文摘要 圖目錄 表目錄 第一章 緒論 1 第二章 文獻與理論回顧 3 2-1 水性樹脂的發展 3 2-2 高分子型乳化劑種類及應用. 6 2-3 乳化聚合安定機構 11 2-3-1 靜電斥力安定 11 2-3-2 立體安定 13 2-3-3 體積排斥穩定 15 2-4 乳化聚合反應行為 17 2-5 鹼可溶樹脂的合成與其在乳化合成應用 26 2-6 乳化聚合動力學分析 29 第三章 研究目的與內容 32 3-1 研究目的 32 3-2 研究內容 33 第四章 實驗方法 34 4-1 化學藥品. 34 4-2 ASR水溶液製備 35 4-3 乳化聚合反應 36 4-4 物性分析 37 4-4-1 酸價測試 37 4-4-2 13C NMR光譜分析. 38 4-4-3 粒徑分析 38 4-4-4 表面張力測試 38 4-4-5 電子顯微鏡測試 38 4-4-6 分子量測試 39 4-4-7 鹼液分離法 39 第五章 ASR之結構及物性研究 40 5-1 ASR之結構分析 40 5-2 ASR水溶液之表面張力 44 5-3 ASR水溶液對單體溶解度影響 48 5-4 結論 51 第六章 ASR在乳化聚合的反應研究 52 6-1 單體對反應速率的影響 52 6-2 ASR對分子量的影響 66 6-3 ASR的接枝反應 68 6-4 乳液結構型態研究 75 6-5 結論 78 第七章 ASR在單體BMA乳化聚合行為研究 79 7-1 ASR對BMA乳化聚合反應速率影響 79 7-2 ASR對BMA乳液粒子數的影響 87 7-3 ASR對BMA乳液表面張力的影響 91 7-4 ASR與起始劑濃度BMA乳液粒子數的影響 95 7-5 ASR對於BMA乳液分子量的影響 98 7-6 結論 101 第八章 單體對ASR系統乳化聚合反應影響 102 8-1 單體親疏水性對乳化反應行為影響 102 8-2 起始劑濃度對乳化合成反應的影響 111 8-3 親油性單體BMA和SM的反應行為比較 115 8-4 反應條件對ASR接枝反應的影響 120 8-5 結論 124 第九章 總結論 125

    1.Chern C.S. and Chen Y.C., Poymer Journal, Vol. 28, No7, 627-632(1996)
    2.Tanrisever T. etc., Journal of Applied Polymer Science, Vol. 61, 485-493(1996).
    3.иヤユ⑦ンЁロю, 1995, 10, 1, Vol. 24, No17, 15-28
    4.趙承堔, “界面科學基礎”, 復文書局, 1984
    5. Boury A., European Coating Journal, 822,824,826, (11), 1996
    6. Magallanes Gonazalez G.S., Dimonie V.L., Sudol E.D., Yue H.J., Klein A., Journal of Polymer Science, Part A: Polymer Chemistry, V01.34, 849-862(1996)
    7. Lockhead R.Y., Cosmetics & Toiletries, Vol.107, Sept. 1992, P.131
    8. Pijrma I, Polymeric Surfactants, Marcel Pekker Inc.
    9. U.S. Patent 4,414,370, 1983
    10. U.S. Patent 4,529,787, 1985
    11. Eliseeva V.I., Ivanchev S.S., Kuchanov S.I., Lebedev A.V., “Emulsion Polymerization and its applications in Industry”, Consultants Bureau, New York, 1981
    12. Derjaguin B.V., Landan L., Acta Physicochemical XIV: 633, 1941
    13. Overbeek J., Verwey E., “Theory of the Stability of Lyophobic Colloids”, Elevier, Amsterdam, 1948
    14. Napper D.H., “Polymeric Stabilization of Colloidal Dispersions”, Academic Press, London, 1983
    15. Evans R. and Nappen D.H., J. Colloid Interface Science, 52, 269, 1971
    16. Napper D.H., Netschey A., J. Colloid Interface Science., 37, 528, 1971
    17. Asakura S., Oosawa F., J. Chem. Phys., 22,1255,1954
    18. Asakura S., Oosawa F., J. Chem. Phys., 33,183,1958
    19. Lochhead R.Y., Cosmetics & Toiletries, Vol.107, 131,Sep., 1992
    20. Matens C.R., “Water Borne Coatings”, Van Nostrand Reinhold Company, New York, N.Y.1987
    21. Daniels Eric.s., “Polymer Latex Preparation Characterization and Application”, American Chemical Society Symposium Series 492, April 14-19, 1991
    22. Odian G., “Principles of Polymerization”, John Wiley & Sons Inc., 1991
    23. Rosen M.J., “Surfactant’s and Interfacial Phenomena “, John Wiley & Sons Inc., 1978
    24. Gardon, J.L., “Emulsion Polymerization” Chap.6 in “Polymerization Process”, C.E. Schild Knecht Ed., Wiley Inter science, New York, 1977
    25. Smith W.V. and Ewart R.F., J. Chem. Phys., 16, 592(1948)
    26. Hansen W.V., Vgelstad J., J. Polymer Sci. Polymer Chem. Ed., 1953, 16, 1978
    27. Hansen F.K., Vgelstad J., J. Polymer Sc. Polymer Chem. Ed., 3047, 17, 1979
    28. Hansen F.K., Vgelstad J., J. Polymer Sc. Polymer Chem. 3047, 17, 1979.
    29. Hansen F.K., Vgelstad J., J. Polymer Sc. Polymer Chem. Ed., 3069, 17, 1979
    30. Fitch R.M., Tsai C. H., In Polymer Colloids, Fitch Ed., Plenum: New York, 1971
    31. Ugelstad J., Hansen F. K., Rubber Chem. Technol.1976, 49, 536
    32. Feeney P.J., Napper D.H., Gilbert R.G., Macromolecules 1984, 17:2520.
    33.U.S. Patent 1,107,249, 1965
    34.U.S. Patent 4,839,413, 1989
    35. Kerssen G.W., Paint & Resin International Issue 3, 1996
    36. Ban Van. Leeuwen, PPCJ, Feb. 1996
    37. Lee D.Y., Kim J.H., J. Appl. Poly. Sci., 69, 543-550(1998)
    38. Davis T.P., O’Driscoll K.F., Piton M.C., Winnik M.A., Macromolecules 1990, 23: 2113.
    39. Brandrup A., Immergut E.H., Polymer Handbook, 3rd ed., New York:Wiley Interscience, 1989.
    40. Kemmere M.F., Meuldijk J., Drinkenburg AAH, German A.I., Polymer Reaction Engineering, 1998, 6(3ƀ), 243. 18.M.
    41.Deady A., Mau W. H., Moad G., Spurling T. H., Makromol., Chem., 194, 1691, (1993)
    42. Nabuurs T., Baijards R. A., German A. L., Progress in Organic Coatings, 27, 163, (1996)
    43. Pascal P., Winnik M.A,, Napper D.H., Gilbert R.G.., Makromol. Chem. Rapid Comm. 1993, 14:213.
    44. Halnan L.F., Napper D.H., Gilbert R.G., J. Chem. Soc. Faraday Trans. 1. 1984, 80: 2851
    45. Hawkett B.S., Napper D.H., Gilbert R.G., J. Chem. Soc. Faraday Trans. l. 1980, 76:132316.
    46. Harkins W.D.,. J. Am. Chem. Soc. 1947, 69:1428.
    47. Choi Y.T., El-aasser M.S., Sudol E.D., Vanderhoff J.W., J. Polym. Sci.: Poly. Chem. 1985, 23:2973.
    48.Chang Y.H., Lee Y.D., Polymer 1999, 40:5929.
    49. Roe C.P., Ind. Eng. Chem. 1968, 60:20.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE