研究生: |
邱聖哲 Chiu, Sheng-Che |
---|---|
論文名稱: |
A Robust Estimation Method for Outlier-Resistant in Functional Data Analysis |
指導教授: |
張適宇
Chang, Shih-Yu |
口試委員: |
丁邦安
翁詠祿 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 62 |
中文關鍵詞: | 離群值 、Functional Data |
外文關鍵詞: | Outliers, Functional Data |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
功能資料(Functional Data)廣泛應用在我們的日常生活,例如人類的身高增長曲線、醫學上的生理週期和網路流量的分析等等…。離群值(Outliers)經常發生在功能資料中,而且有時候很難直接透過肉眼目測直接的檢測出來。離群值的存在會在統計分析中會導致不正確的結果,例如:數據模型建構上的錯誤、偏差的估測結果等等…。因此,一個能夠自動的並且有效率的來處理離群資料的方法是一個重要的課題。在本文中,我們提出一個在功能資料分析中,進行參數估測程序時可以處理並且抵抗離群值的方法。該估測器是基於觀察值為t分佈的假設,並且由理論推導結果顯示能夠自動地來檢測出離群值。此外,經由一個加權函數,離群值能夠被向下加權以減少對參數估測的影響,從而提高強健性。在理論分析部分,我們討論估測器的一致性(Consistency)分析,並經由推導其影響函數(Influence Function)來分析估測器對於離群值的靈敏性(Sensitivity)。而在數值分析結果中顯示我們所提出的估測器是強健的,並且能夠有效的對抗離群值。
Functionaldataiswidelyappliedinourdailylife,suchashumanheightgrowth,circadianrhythmsandinternettracanalysisetc.Outliersoftenoccurinfunctionaldata,andsome-timesarediculttodirectlydetectbyvisualinspectionandcauseincorrectconclusioninthestatisticalanalysis.Thus,themethodswhichcanhandleoutliersautomaticallyandecientlyisanimportantissue.Inthispaper,weproposeamethodtohandleandagainstoutliersonparameterestimation.TheestimatorsarebasedonStudent'stdistribution,andwhichcanautomaticallydetectoutliers.Inaddition,theoutlierwillberesistedviaaweightfunction,andthusenhancerobustness.Intheoreticallyderivation,weintroducetheconsistencypropertyofestimatorsandanalyzetheoutliersensitivityandtheasymp-toticcovariancebyderivingtheirin
uencefunction.Ournumericalresultsdemonstrateourproposedestimatorsarerobustandcanecientlyagainstoutliers.
[1] L. Zhang, J. S. Marron, H. Shen, and Z. Zhu, "Singular value decomposition and its visualization", Journal of Computational and Graphical Statistics, vol. 16, no. 4, pp.
833-854, 2007.
[2] J. O. Ramsay and B. W. Silverman, "Functional data analysis." 2005.
[3] D. Gervini, "Detecting and handling outlying trajectories in irregularly sampled functional datasets," Annals, vol. 3, no. 4, pp. 1758-1775, 2009.
[4] J. G. Lee, J. Han, and X. Li, "Trajectory outlier detection: A partition-and-detect framework," 2008.
[5] A. S. Kosinski, "A procedure for the detection of multivariate outliers," Computational statistics & data analysis, vol. 29, no. 2, pp. 145-161, 1998.
[6] L. A. Garca-Escudero and A. Gordaliza, "A proposal for robust curve clustering," Journal of classication, vol. 22, no. 2, pp. 185-201, 2005.
[7] I. Ben-Gal, "Outlier detection," Data Mining and Knowledge Discovery Handbook, pp.117-130, 2010.
[8] J. S. Picard and A. J. Weiss, "Bounds on the Number of Identiable Outliers in Source Localization by Linear Programming," Signal Processing, IEEE Transactions on, vol. 58, no. 5, pp. 2884-2895, 2010.
[9] Y. Li, L. J. C. Jr, and N. R. Sollenberger, "Robust channel estimation for OFDM systems with rapid dispersive fading channels," IEEE Transactions on Communications,
vol. 46, no. 7, pp. 902-915, 1998.
[10] C. Cao, L. Xie, H. Zhang, and S. Xie, "A robust channel estimator for DS-CDMA systems under multipath fading channels," Signal Processing, IEEE Transactions on,
vol. 54, no. 1, pp. 13-22, 2005.
[11] Y. C. Eldar, A. Ben-Tal, and A. Nemirovski, "Robust mean-squared error estimation in the presence of model uncertainties," Signal Processing, IEEE Transactions on, vol. 53, no. 1, pp. 168-181, 2004.
[12] M. Pilanci, O. Arikan, and M. C. Pinar, "Structured least squares problems and robust estimators," Signal Processing, IEEE Transactions on, vol. 58, no. 5, pp. 2453-2465,2010.
[13] Y. Chakhchoukh, "A new robust estimation method for ARMA models," Signal Processing, IEEE Transactions on, vol. 58, no. 7, pp. 3512-3522, 2010.
[14] E. M. Knorr, R. T. Ng, and V. Tucakov, "Distance-based outliers: algorithms and applications," The VLDB Journal, vol. 8, no. 3, pp. 237-253, 2000.
[15] M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander, "LOF: identifying density-based local outliers," Sigmod Record, vol. 29, no. 2, pp. 93-104, 2000.
[16] C. Aggarwal and S. Yu, "An eective and ecient algorithm for high-dimensional outlier detection," The VLDB JournalThe International Journal on Very Large Data Bases,
vol. 14, no. 2, pp. 211-221, 2005.
[17] F. Angiulli and C. Pizzuti, "Outlier mining in large high-dimensional data sets," Knowledge and Data Engineering, IEEE Transactions on, vol. 17, no. 2, pp. 203-215, 2005.
[18] M. Riani, A. C. Atkinson, and A. Cerioli, "Finding an unknown number of multivariate outliers," Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 71, no. 2, pp. 447-466, 2009.
[19] S. M. Kay, "Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory," 1993.
[20] A. M. Tulino and S. Verdu, Random matrix theory and wireless communications. Now Publishers Inc, 2004.
[21] J. Dattorro, Convex optimization & Euclidean distance geometry. Meboo Publishing USA, 2005.
[22] J. R. Magnus and H. Neudecker, Matrix differential calculus with applications in statistics and econometrics. Wiley, 1999.
[23] C. R. Rao, "Criteria of estimation in large samples," Sankhya: The Indian Journal of Statistics, Series A, vol. 25, no. 2, pp. 189-206, 1963.
[24] R. A. Maronna, R. D. Martin, and V. J. Yohai, Robust statistics: Theory and Methods. Wiley New York, 2006.
[25] D. Gervini, "Technical Report for "Detecting and handling outlying trajectories in irregularly sampled functional datasets", 2009.
[26] M. Bilodeau and D. Brenner, Theory of multivariate statistics. Springer Verlag, 1999.
[27] P. J. Huber, Robust statistics. Wiley Online Library, 1981, vol. 1.