簡易檢索 / 詳目顯示

研究生: 田乃文
Tien, Nai-Wen
論文名稱: Protein with Tau-Like Repeats (PTL-1) Is a Cargo for KIF1A/UNC-104 and Regulates Its Transport Characteristics
類Tau蛋白PTL-1被KIF1A/UNC-104運輸並調控其運輸特性
指導教授: 王歐力
Oliver I. Wagner
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 56
中文關鍵詞: tau蛋白類Tau蛋白PTL-1神經軸突運輸微管分子馬達KIF1A/UNC-104阿茲海默症秀麗隱桿線蟲機械力感受神經元
外文關鍵詞: tau proteins, Protein with Tau-Like Repeats (PTL-1), axonal transport, KIF1A/UNC-104, Alzheimer's disease, C. elegans, mechanosensory neuron
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因tau 蛋白代謝異常而造成的各式神經退化性疾病統稱為Taupathies,例如阿茲海默症病人的腦裡可發現tau這種微管相關蛋白有異常堆積並形成神經纖維纏結的現象。一般而言,細胞內運輸物的堆積(類澱粉前驅蛋白,tau,神經細絲蛋白)可視為退化神經細胞的常見現象之一,而一些研究也發現當tau蛋白表現量增高時,細胞內的運輸會受到影響,使得許多運輸物不當堆積。因此,研究微管上負責運輸的分子馬達和微管相關蛋白之間的關係是非常重要的。在這篇研究裡,我們利用秀麗隱桿線蟲來探討類tau蛋白PTL-1和主要負責神經軸突運輸的分子馬達-KIF1A/UNC-104兩者的關係。研究發現在沒有PTL-1的情況下,UNC-104往細胞體方向運輸時改變方向的次數增加且中途停頓不動的次數和野生型相比也明顯增加,證明UNC-104的運動性受到影響,而同樣的現象也可在UNC-104運輸物synaptobrevin-1觀察到。此外,UNC-104和PTL-1在神經的相同位置上表現甚至一起同步移動的現象進一步指出PTL-1可能會被UNC-104運輸,且分析出來的結果顯示PTL-1的運輸速度屬於快速型運輸。最後,我們用雙分子螢光互補技術發現線蟲體內PTL-1和UNC-104兩者間的確有交互作用存在。


    Tauopathies include a broad range of neuropathological disorders that are based on defects in tau metabolisms. The microtubule-binding protein tau plays roles in Alzheimer’s disease in which tau accumulates in neurofibrillary tangles. In general, cargo accumulation (amyloid precursor protein, tau, neurofilaments) is a common observed phenomenon in degenerated neurons and it has been found that elevation of tau expression disrupts cargo transport, leading to cargo accumulation. Thus it seems to be important to investigate the interaction between microtubule-associated proteins and molecular motors. Here, we set out to investigate the interaction of tau/PTL-1 (Protein with Tau-Like repeats) and the major axonal transporter KIF1A/UNC-104 in Caenorhabditis elegans. In PTL-1 knock-out worms, the motility of UNC-104 is critically affected: more motor reversals for retrograde movements are observed and at the same time more pausing events for retrograde movements can be seen (compared to wildtype). Interestingly, similar behavior can be observed for UNC-104’s major cargo synaptobrevin-1 alone. Moreover, UNC-104 and PTL-1 co-localize and even co-migrate in the nervous system of living animals, suggesting that PTL-1 might be a cargo of UNC-104. Further motility analysis shows comparable fast transport rate of PTL-1. Last, we used bimolecular fluorescence complementation assay (BiFC) to test for interactions between PTL-1 and UNC-104 in the living worms. Indeed, using this novel assay (that can effortlessly replace the more complicated FLIM/FRET assay) we were able to identify interactions between these two proteins.

    中文摘要 I Abstract II Acknowledgement III Table of Content IV 1. Introduction 1 1.1 Caenorhabditis elegans 1 1.1.1 Nervous system in C. elegans 1 1.2 Molecular motors as kinesin and dynein complex 3 1.3 Axonal transport 3 1.4 Tau and Protein with Tau-like Repeats (PTL-1) in C. elegans 5 1.5 Mechanosensory neurons in C. elegans 7 1.6 Specific aims in this study 7 2. Materials and methods 8 2.1 Maintenance and growth of worms 8 2.2 C. elegans strains used in this study 8 2.3 Crossing of worms and heat shock treatment 8 2.4 Isolation of neuronal cells from worms 9 2.5 Making genomic DNA from C. elegans 12 2.6 Constructs used in this study 12 2.7 Microinjection of C. elegans 12 2.8 Motor motility analysis: Time-lapse imaging, data evaluation and statistics 14 2.9 Particle analysis and co-localization analysis 15 3. Result 16 3.1 Motility analysis of UNC-104 in isolated neurons and living worms 16 3.2 Motility of UNC-104 and transport of synaptic vesicles are abnormal in the absence of PTL-1. 17 3.3 Co-localization and co-migration of PTL-1 and UNC-104 19 3.4 The interaction between PTL-1 and UNC-104 in living worms 20 4. Discussion 22 4.1 Bidirectional movement of UNC-104 22 4.2 The effect of ptl-1 knock-out on axonal transport 23 4.3 The transport of PTL-1 25 4.4 The test for interaction between UNC-104 and PTL-1 in living worms 27 5. Future perspective 29 6. References 30 7. Tables 34 8. Figures 36 9. Appendixes 49

    1. Hirokawa, N., et al., Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol, 2009. 10(10): p. 682-96.
    2. Verhey, K.J. and J.W. Hammond, Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol, 2009. 10(11): p. 765-77.
    3. Vale, R.D., The molecular motor toolbox for intracellular transport. Cell, 2003. 112(4): p. 467-80.
    4. Yonekawa, Y., et al., Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J Cell Biol, 1998. 141(2): p. 431-41.
    5. Kardon, J.R. and R.D. Vale, Regulators of the cytoplasmic dynein motor. Nat Rev Mol Cell Biol, 2009. 10(12): p. 854-65.
    6. Welte, M.A., Bidirectional transport along microtubules. Curr Biol, 2004. 14(13): p. R525-37.
    7. Brown, A., Axonal transport of membranous and nonmembranous cargoes: a unified perspective. J Cell Biol, 2003. 160(6): p. 817-21.
    8. Roy, S., et al., Cytoskeletal requirements in axonal transport of slow component-b. J Neurosci, 2008. 28(20): p. 5248-56.
    9. Gunawardena, S. and L.S. Goldstein, Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. J Neurobiol, 2004. 58(2): p. 258-71.
    10. Amos, L.A. and D. Schlieper, Microtubules and maps. Adv Protein Chem, 2005. 71: p. 257-98.
    11. Telley, I.A., P. Bieling, and T. Surrey, Obstacles on the microtubule reduce the processivity of Kinesin-1 in a minimal in vitro system and in cell extract. Biophys J, 2009. 96(8): p. 3341-53.
    12. Chang, L., et al., The dynamic properties of intermediate filaments during organelle transport. J Cell Sci, 2009. 122(Pt 16): p. 2914-23.
    13. Mandelkow, E.M., et al., MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. J Cell Biol, 2004. 167(1): p. 99-110.
    14. Seitz, A., et al., Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J, 2002. 21(18): p. 4896-905.
    15. Vershinin, M., et al., Multiple-motor based transport and its regulation by Tau. Proc Natl Acad Sci U S A, 2007. 104(1): p. 87-92.
    16. Morfini, G., et al., Tau binding to microtubules does not directly affect microtubule-based vesicle motility. J Neurosci Res, 2007. 85(12): p. 2620-30.
    17. Cairns, N.J., V.M. Lee, and J.Q. Trojanowski, The cytoskeleton in neurodegenerative diseases. J Pathol, 2004. 204(4): p. 438-49.
    18. Morfini, G.A., et al., Axonal transport defects in neurodegenerative diseases. J Neurosci, 2009. 29(41): p. 12776-86.
    19. Ballatore, C., V.M. Lee, and J.Q. Trojanowski, Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci, 2007. 8(9): p. 663-72.
    20. Tsukada, M., et al., Doublecortin association with actin filaments is regulated by neurabin II. J Biol Chem, 2005. 280(12): p. 11361-8.
    21. des Portes, V., et al., A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell, 1998. 92(1): p. 51-61.
    22. Saulnier, R., et al., Alterations in myelination in the central nervous system of dystonia musculorum mice. J Neurosci Res, 2002. 69(2): p. 233-42.
    23. McMurray, C.T., Neurodegeneration: diseases of the cytoskeleton? Cell Death Differ, 2000. 7(10): p. 861-5.
    24. Chen, J., et al., Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature, 1992. 360(6405): p. 674-7.
    25. Bulinski, J.C. and G.G. Borisy, Immunofluorescence localization of HeLa cell microtubule-associated proteins on microtubules in vitro and in vivo. J Cell Biol, 1980. 87(3 Pt 1): p. 792-801.
    26. Metcalfe, M.J. and M.E. Figueiredo-Pereira, Relationship between tau pathology and neuroinflammation in Alzheimer's disease. Mt Sinai J Med, 2010. 77(1): p. 50-8.
    27. Goedert, M., et al., PTL-1, a microtubule-associated protein with tau-like repeats from the nematode Caenorhabditis elegans. J Cell Sci, 1996. 109 ( Pt 11): p. 2661-72.
    28. Gordon, P., et al., The invertebrate microtubule-associated protein PTL-1 functions in mechanosensation and development in Caenorhabditis elegans. Dev Genes Evol, 2008. 218(10): p. 541-51.
    29. Chalfie, M., et al., The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci, 1985. 5(4): p. 956-64.
    30. Shyu, Y.J., et al., Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis. Nat Protoc, 2008. 3(4): p. 588-96.
    31. Strange, K., M. Christensen, and R. Morrison, Primary culture of Caenorhabditis elegans developing embryo cells for electrophysiological, cell biological and molecular studies. Nat Protoc, 2007. 2(4): p. 1003-12.
    32. Christensen, M., et al., A primary culture system for functional analysis of C. elegans neurons and muscle cells. Neuron, 2002. 33(4): p. 503-14.
    33. Mello, C.C., et al., Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J, 1991. 10(12): p. 3959-70.
    34. Kocsis, E., et al., Image averaging of flexible fibrous macromolecules: the clathrin triskelion has an elastic proximal segment. J Struct Biol, 1991. 107(1): p. 6-14.
    35. Miyasaka, T., et al., Progressive neurodegeneration in C. elegans model of tauopathy. Neurobiol Dis, 2005. 20(2): p. 372-83.
    36. Wagner, O.I., et al., The interaction of neurofilaments with the microtubule motor cytoplasmic dynein. Mol Biol Cell, 2004. 15(11): p. 5092-100.
    37. Fan, J.Y., et al., Split mCherry as a new red bimolecular fluorescence complementation system for visualizing protein-protein interactions in living cells. Biochem Biophys Res Commun, 2008. 367(1): p. 47-53.
    38. Hammond, J.W., et al., Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition. PLoS Biol, 2009. 7(3): p. e72.
    39. Wagner, O.I., et al., Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans. Proc Natl Acad Sci U S A, 2009. 106(46): p. 19605-10.
    40. Gross, S.P., et al., Coordination of opposite-polarity microtubule motors. J Cell Biol, 2002. 156(4): p. 715-24.
    41. Ally, S., et al., Opposite-polarity motors activate one another to trigger cargo transport in live cells. J Cell Biol, 2009. 187(7): p. 1071-82.
    42. Hendricks, A.G., et al., Motor Coordination via a Tug-of-War Mechanism Drives Bidirectional Vesicle Transport. Curr Biol, 2010.
    43. Dixit, R., et al., Differential regulation of dynein and kinesin motor proteins by tau. Science, 2008. 319(5866): p. 1086-9.
    44. Yuan, A., et al., Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice. J Neurosci, 2008. 28(7): p. 1682-7.
    45. Vershinin, M., et al., Tuning microtubule-based transport through filamentous MAPs: the problem of dynein. Traffic, 2008. 9(6): p. 882-92.
    46. Hall, D.H. and E.M. Hedgecock, Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell, 1991. 65(5): p. 837-47.
    47. Magnani, E., et al., Interaction of tau protein with the dynactin complex. EMBO J, 2007. 26(21): p. 4546-54.
    48. Miller, K.E. and S.R. Heidemann, What is slow axonal transport? Exp Cell Res, 2008. 314(10): p. 1981-90.
    49. Utton, M.A., et al., The slow axonal transport of the microtubule-associated protein tau and the transport rates of different isoforms and mutants in cultured neurons. J Neurosci, 2002. 22(15): p. 6394-400.
    50. Cuchillo-Ibanez, I., et al., Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin. FASEB J, 2008. 22(9): p. 3186-95.
    51. Utton, M.A., et al., Molecular motors implicated in the axonal transport of tau and alpha-synuclein. J Cell Sci, 2005. 118(Pt 20): p. 4645-54.
    52. Brandt, R., et al., A Caenorhabditis elegans model of tau hyperphosphorylation: induction of developmental defects by transgenic overexpression of Alzheimer's disease-like modified tau. Neurobiol Aging, 2009. 30(1): p. 22-33.
    53. Dubey, M., et al., Tau inhibits anterograde axonal transport and perturbs stability in growing axonal neurites in part by displacing kinesin cargo: neurofilaments attenuate tau-mediated neurite instability. Cell Motil Cytoskeleton, 2008. 65(2): p. 89-99.
    54. Tokuraku, K., et al., An isoform of microtubule-associated protein 4 inhibits kinesin-driven microtubule gliding. J Biochem, 2007. 141(4): p. 585-91.
    55. Trinczek, B., et al., Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J Cell Sci, 1999. 112 ( Pt 14): p. 2355-67.
    56. Stamer, K., et al., Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. The Journal of cell biology, 2002. 156(6): p. 1051.
    57. Ebneth, A., et al., Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. The Journal of cell biology, 1998. 143(3): p. 777.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE