簡易檢索 / 詳目顯示

研究生: 陳韋兆
Wei-Chao Chen
論文名稱: 藉溶液法及真空鍍膜技術製成多元高豐度元素(碳、銅、鋅、錫、硫、硒)光電元件之探討
Optoelectronic Devices Based on Earth Abundant Element (C, Cu, Zn, Sn, S, Se) by Solution and Vacuum Processes
指導教授: 李志浩
Chih-Ha Lee
陳貴賢
Kuei-Hsien Chen
林麗瓊
Li-Chyong Chen
口試委員: 闕郁綸
Yu-Lun Chueh
郭東昊
Dong-Hau Kuo
黃智賢
Jih Shang Hwang
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 143
中文關鍵詞: 薄膜太陽能電池透明導電電極奈米碳管硫硒化合物
外文關鍵詞: Thin film solar cell, transparent conducting film, carbon nanotubes, sulfide/selenide compound
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在探討使用地球多豐的元素合成光電材料及元件,並且探討其製程與機制。首先,我們發展三種硫硒族化合物的針對薄膜太陽能元件製成,包含銅鋅錫硫奈米粒子、多重硒化法、以及快速升溫燒結法。在微波輔助合成法中,我們利用油胺( OLA)和三辛基氧化膦( TOPO )作為反應溶劑。用兩個互補的溶劑做出適當的比例,這種微波加熱的方法能夠縮短從200分鐘至10分鐘的反應時間得到高品質銅鋅錫硫的奈米粒子。我們的研究結果證明,適當的化學計量和合理的能帶隙(〜 1.5 eV)的結晶銅鋅錫硫奈米粒子是可以實現的。同時,我們還提出了多層金屬疊體製備的多重硒化法製作銅鋅錫硒薄膜。通過在多重硒化過程,成核溫度可以精確地從150度到500度被控制,經由精確的控制成核溫度,高均勻性和高晶體品質性的銅鋅錫硒薄膜可以準確地被得到,且可以完全排除二次相。最後,經由精確的控制燒結溫度銅鋅錫硒薄膜太陽能電池的元件效率可以達到 5.8%。在第三部分,我們使用多堆積的金屬層以及快速升溫燒結法合成高品質的銅鋅錫硫硒薄膜。我們發現,製備金屬疊層前驅物時,沉積層數和疊層金屬相互擴散問題對薄膜和元件效率有顯著效果。與傳統的3層堆前驅物的元件比較,使用修飾後的9層疊體前驅物在快速升溫燒結法處理的元件效率可從4.8提高到7.7 %,且可合成晶體密度高,化學當量比適合,並抑制富銅的雙層結構形成。
    最後,我們介紹了使用單壁奈米碳管通過超聲霧化的新方法製成具有高透明,高導電性,大面積的導電薄膜。由於個別的奈米碳管內的強凡德瓦力,溶解單壁碳奈米管是一個極具有挑戰性的工作;因此,為了促使在溶劑中的奈米碳管溶解,我們使用導電高分子修飾奈米碳管表面。經過控制導電高分子的側鍊長短作我們發現,無定形碳,和良好分散的奈米碳管可以完美的進行分離。最後,使用較長側鍊的導電高分子分散的奈米碳管的溶液經由超聲波噴霧,精確量將要溶液均勻地沉積到大面積的玻璃基板上,形成超高平整,
    ii
    高透射,和高導電性的透明導電膜。我們希望,由於其近紅外透射特性和優良的電傳輸特性奈米碳管的薄膜將是多層結構太陽能電池,薄膜太陽能電池以及熱電元件,以及其它需要p型透明導體的應用中最適合的材料。


    This dissertation presents investigations of the design and synthesis of optoelectronic materials with earth abundant element as well as novel experimental design methodologies. First, we developed three different processes to synthesize quaternary chalcogenide compound for solar cell application, including CZTS colloidal nanoparticles (NPs) by microwave assisted heating process, multi-step selenization process, and fast ramping annealing processes. In microwave heating process, we utilize oleylamine (OLA) and trioctylphosphine oxide (TOPO) as the reaction solvents. With appropriate ratio of two complementary solvents, this microwave heating method can shorten the reaction time from 200 min to 10 min with high quality of CZTS NPs. Our results proved that the crystalline CZTS NPs with appropriate stoichiometry and reasonable energy band gap (~1.5 eV) could be achieved.
    Meanwhile, we also proposed a multi-step selenization process for the Cu-Zn/Sn metallic stacked precursor to prepare Cu2ZnSnSe4 (CZTSe) absorber. Then the reaction in fixed Se vapour pressure in a series of increasing temperatures was studied. By precisely controlling the nucleation temperatures from 150 oC to 500 oC during 4-step selenization, the homogeneity and crystal quality of CZTSe can be achieved, and the binary phase can be totally ruled out. Finally, stoichiometry with less impurity CZTSe thin film formed at the optimum annealing conditions 500 oC for 10 min: lower or higher temperature lead to insufficient crystallization or undesirable phase segregation. A device efficiency of 5.8 % for the CZTSe solar cell have been achieved with an open circuit voltage of 370 mV, short circuit current of 31.99 mA/cm2, and a fill factor of 48.3%.
    In the third part, we synthesized high quality CZTSSe with fast ramping heating process with multi-stacking metallic layers. We demonstrated that precursor deposition numbers and inter-diffusion issue have a significant effect on the quality of thin film and device performance. The device prepared with conventional 3 layers stacked, with excessive Cu-rich secondary phase
    iv
    formation at the back contact region, results in poor performance of devices due to the poor interdiffusion of precursors. By using the modified 9 layer stacked precursor and fast ramping heating process the device efficiency can be improved from 4.8 to 7.7% with open circuit voltage enhancement from 0.44V to 0.5V due to a compact, smooth microstructure, and the suppression of Cu-rich bi-layer formation.
    Finally, we introduced a new method to fabricate SWNTs network films with high transparent, high electrical conductivity, and uniform in large (10 cm*10 cm) scale by ultrasonic spray. Due to van der Waals' force within individual SWNTs, dispersion of SWNTs in solvent is a challenging issue; therefore, in order to facilitate SWNTs dissolution in solvent, we functionalize surface of SNWTs with conductive polymer. As SWNTs dissolved, we centrifuged the solution, making the bundle SWNTs, amorphous carbon, and well-dispersed SWNTs to be separated. Finally, dispersive SWNTs solution is ultrasonically sprayed, permitting accurate quantity of SWNTs to be deposited onto substrate with large area uniformity, forming ultra-high smoother, high transmission, and high conductivity transparent conductive film. Hopefully, the optical and electrical transport properties of the SWNTs will be appropriate candidate for multiple-junction solar cells, thermo-photovoltaics, and other applications benefiting from a p-type transparent conductor application due to high near-infrared transmission.

    中文摘要 i Abstract iii 致謝 v Figure of Contents x Table of Contents xvii Chapter 1 Overview of this dissertation 1 1.1 Preface 1 1.2 Part1: Solution/vacuum process on growth of Cu2ZnSnS(Se)4 absorber layer for thin film solar cell applications 5 1.3 Part 2: Carbon-based material for transparent conducting film fabrication 6 Chapter 2 Introduction of transparent conducting film 8 2.1 The importance of optoelectronic devices 8 2.2 The current status of transparent conductive oxides 14 2.3 Flexible alternatives to indium tin oxide 15 2.4 Importance of transparent conductive oxide (TCO)/ transparent conductive film (TCF) for thin film solar cell 18 Chapter 3 Overview of thin film solar cell 22 3.1 Structure of thin film photovoltaics 22 3.1.1 Substrate and back contact 23 3.1.2 Absorber layer 23 3.1.3 Buffer layer and front contact 24 3.2 Working principle of thin-film solar cells 25 3.2.1 Diode equation 27 3.2.2 Recombination mechanism 29 3.2.3 Band offsets 29 3.3 Efficiency gain 31 3.4 Producability 31 3.5 Durability 32 Chapter 4 Overview of Cu2ZnSnS(Se)4 33 4.1 Cu2ZnSnS(Se)4 (CZTS(Se)): properties, history and device efficiencies 33 4.2 Fabrication processes for CZTS(e) materials 35 4.3 Nanoparticle-based approaches 36 4.4 Vacuum-based approaches 38 4.4.1. Sputtering process 39 4.4.2. Evaporation 47 4.5 Sulfurization or selenization of CuZnSn, CZTS and CZTSe precursors 49 Chapter 5 Co-solvent effect on synthesis of microwave-assisted Cu2ZnSnS4 nanoparticles synthesis 52 5.1 Overview 52 5.2 Experimental setup 53 5.3 Result & discussion 54 5.4 Summary 64 Chapter 6 Fabrication of Cu2ZnSnSe4 solar cells through multi-step selenization of layered metallic precursor film 65 6.1 Overview 65 6.2 Experimental methods 67 6.3 Result & discussion 69 6.4 Summary 79 Chapter 7 Multi-metallic stacked layers effects on Cu2ZnSn(S,Se)4 thin films solar cell prepared by fast ramping annealing 81 7.1 Overview 81 7.2 Experiment 83 7.4 Summary 95 Chapter 8 Side group of poly(3-alkylthiophene)s controlled dispersion of single-walled carbon nanotubes for transparent conducting film 96 8.1 Overview 96 8.2 Experimental setup 97 8.3 Results and discussion 99 8.4 Summary 110 Chapter 9 Conclusions and recommendation 111 9.1 Conclusions 111 9.2 Future work and recommendation 112 Reference: 114 Appendix 138 A.1 Time dependent of OLA and TOPO solvent with each precursor: 138 A.2 Compositional comparison of 3LYS and 9LYS precursor: 139 A.3 : Diameter distribution of P3AT wrapped SWNTs measured by TEM: 140 A.4 Zeta potential data for different P3AT derivatives and SWNTs in CB solution: 141 A5. Curriculum vitae and publications: 142

    [1] C. Greenwood, A. Hohler, G. Hunt, M. Liebreich, V. Sonntag-O’Brien, E. Ushe, “Global Trends in Sustainable Energy Investment 2007: Analysis of Trends and Issues in the Financing of Renewable Energy and Energy Efficiency in OECD and Developing Countries” United Nations Environment Programme., p. 3, 2007
    [2] J. Makower, R. Pernick, C. Wilder, Clean Energy Trends, 1–4, 2009
    [3] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 36), Prog. Photovolt.: Res. Appl., 18, 346–352, 2010
    [4] A. M. Bagher, M. M. A. Vahid, M. Mohsen, “Types of Solar Cells and Application” American Journal of Optics and Photonics., 3, 5, 94-113, 2015
    [5] G. Phipps, C. Mikolajczak, T. Guckes, “Indium and gallium: long-term supply” Renew. Energy Focus, 9, 56–59, 2009
    [6] V. Fthenakis, “Sustainability of photovoltaics: the case for thin-film solar cells” Renew. Sustain. Energy Rev., 13, 2746–2750, 2009
    [7] S.R. Taylor, S.M. McLennan, “The continental crust: its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks” Blackwell Scientific Publication, Oxford, 1-312, 1985
    [8] R. M. Izatt, S. R. Izatt, R. L. Bruening, N. E. Izatt, B. A. Moyer, “Challenges to achievement of metal sustainability in our high-tech society” Chem. Soc. Rev., 43, 2451-2475, 2014
    [9] B.T. Emmerson, ’’Ouch–ouch’’ disease: the osteomalacia of cadmium nephropathy” Ann. Intern. Med., 73, 854–855, 1970
    [10] B. Ritholtz, “Best Research-Cell Efficiencies. 2015” [cited 2015 July 7th]; retrieved from: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
    [11] B.A. Andersson, “Materials availability for large-scale thin-film photovoltaics” Prog. Photovolt: Res. Appl. 8, 61–76, 2000
    [12] C. Ecclestone, “The sizzling silvery-white Indium heats up for a bull run” April 15, 2014, retrieved from: http://investorintel.com/technology-metals-intel/indium-joined-hip-zinc/
    [13] U. P. Singh, S. P. Patra, “Progress in polycrystalline thin-film Cu(in,Ga)Se2 solar cells” Int. J. Photogr., Volume 2010 (2010), Article ID 468147, 19 pages
    [14] K. Ito, T. Nakazawa, “Electrical and optical properties of stannite-type quaternary semiconductor thin films” Jpn. J. Appl. Phys. 27, 2094–2097, 1988
    [15] J. Cui, A. Wang, N. L. Edleman, J. Ni, P. Lee, N. R. Armstrong, T. J. Marks. “Indium Tin Oxide Alternatives—High Work Function Transparent Conducting Oxides as Anodes for Organic Light-Emitting Diodes.” Adv. Mater., 13, 1476, 2001
    [16] S. De, J. N. Coleman, “Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films?” Acs Nano, 4, 2713, 2010
    [17] Y. Leterrier, L. Medico, F. Demarco, J. A. E. Manson, U. Betz, M. F. Escola, M. K. Olsson, F. Atamny, “Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays.” Thin Solid Films, 460, 156, 2004
    [18] N. Saran, K. Parikh, D. S. Suh, E. Muñoz, H. Kolla, S. K. Manohar, “Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates.” J. Am. Chem. Soc., 126, 4462, 2004
    [19] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. O¨zyilmaz, J. H. Ahn, B. H. Hong, S. Iijim, “Roll-to-roll production of 30-inch graphene films for transparent electrodes.” Nat. Nanotechnol., 5, 574, 2010
    [20] J. M. Phillips, J. Kwo, G. A. Thomas, S. A. Carter, R. J. Cava, S. Y. Hou, “Transparent conducting thin-films of GaInO3.” Appl. Phys. Lett., 65, 115, 1994
    [21] L. Chkoda, C. Heske, M. Sokolowski, E. Umbach, F. Steuber, J. Staudigel, M. Stoßel, J. Simmerer, “Work function of ITO substrates and band-offsets at the TPD/ITO interface determined by photoelectron spectroscopy.” Synth. Met., 111, 315, 2000
    [22] M. A. Green, “Estimates of Te and In Prices from Direct Mining of Known Ores.” Prog. Photovoltaic Res. Appl., 17, 347, 2009
    [23] Chinese Indium Strategies: Threats and Opportunities for Displays, Photovoltaics and Electronics. [cited 2011 April 2nd]; retrieved from: http://nanomarkets.net/market_reports/report/chinese_indium_strategies_threats_and_opportunities_for_displays_photovoltaics_and_electronics/.
    [24] T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes.” Semicond. Sci. Technol., 20, S35, 2005
    [25] G. Carter, M. J. Nobes, D.G. Armour, “The erosion energy efficiency of sputtering.” Vacuum, 32, 509, 1982
    [26] T. Ricker, “Sony Color Flexible OLED: world’s first 16.7 million bendy display.” [cited 2011 March 21]; retrieved from: http://www.product-reviews.net/2007/05/25/sony- color-flexible-oled-worlds-first-167-million-bendy-display/.
    [27] A. N. Diana, “Stuff Of The Future: New Method To Screen Organic Materials For Organic Photovoltaic Cells.”; retrieved from: http://solarpower.e- bookz.info/?p=159.
    [28] "Solid-State Lighting Research and Development: Multi Year Program Plan, U.S.D.o. Energy, Editor. March 2010: Washington D.C. p. 162.
    [29] “White OLED Outlook Brightens with Efficiency Breakthrough.” [cited 2010 July 15]; retrieved from: http://pressroom.gelighting.com/news/OLED_KM_2010#.Vxb1-JN95sM
    [30] D. A. Pardo, G.E. Jabbour, N. Peyghambarian, “Application of Screen Printing in the Fabrication of Organic Light-Emitting Devices.” Adv. Mater., 12, 1249, 2000
    [31] R.E. Smalley, “Future Global Energy Prosperity: The Terawatt Challenge.” MRS Bulletin, 30(06), 412, 2005
    [32] K. Zweibel, “The Terawatt Challenge for Thin-Film PV.” Technical Report NREL/TP-520-38350, 2005
    [33] Q. Zhang, B. Kan, F. Liu, G.Long, X. Wan, X. Chen, Y. Zuo, W. Ni, H. Zhang, M. Li, Z. Hu, F. Huang, Y. Cao, Z. Liang, M. Zhang, T. P. Russell, Y. Chen, “Small-molecule solar cells with efficiency over 9%.” Nature Photonics, 9, 2015, 35-41
    [34] R. Jackson, “Development of single wall carbon nanotube transparent conductive electrodes for organic electronics.” Georgia Institute of Technology: United States, A Dissertation, 2009
    [35] B. Kippelen, J. L. Bredas, “Organic photovoltaics.” Energ Environ Sci, 2, 2009, 251
    [36] T. Minami, “New n-Type Transparent Conducting Oxides.” MRS Bulletin, 25, 38, 2000
    [37] X. Jiang, F. L. Wong, M. K. Fung, S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices.” Appl. Phys. Lett., 83, 1875, 2003
    [38] F. Louwet, L. Groenendaal, J. Dhaen, J. Manca, J. V. Luppen, E. Verdonck, L. Leenders, “PEDOT/PSS: synthesis, characterization, properties and applications.” Synthetic Metals, 135, 115, 2003
    [39] V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, Y. Yang, “Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors.” Nano Letters, 9, 1949, 2009
    [40] M. H. Andrew Ng, L. T. Hartadi, H. Tan, C. H. Patrick Poa, “Efficient coating of transparent and conductive carbon nanotube thin films on plastic substrates.” Nanotechnology, 19, 205703, 2008
    [41] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler, “Transparent, conductive carbon nanotube films.” Science, 305, 1273, 2004
    [42] R. C. Tenent, T. M. Barnes, J. D. Bergeson, A. J. Ferguson, B. To, L. M. Gedvilas, M. J. Heben, J. L. Blackburn, “Ultrasmooth, Large-Area, High-Uniformity, Conductive Transparent Single-Walled-Carbon-Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying.” Adv. Mat., 21, 3210, 2009
    [43] J. H. Yim, Y. S. Kim, K. H. Koh, S. Lee, “Fabrication of transparent single wall carbon nanotube films with low sheet resistance.” J. Vac. Sci. Technol. B, 26, 851, 2008
    [44] W. R. Small, M. in het Panhuis, “Inkjet Printing of Transparent, Electrically Conducting Single-Walled Carbon-Nanotube Composites.” Small, 3, 1500, 2007
    [45] K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff, M. Korobov, “Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes.” J. Phys. Chem. B., 104, 8911, 2000
    [46] H. Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, Y. H. Lee, “Effect of Acid Treatment on Carbon Nanotube-Based Flexible Transparent Conducting Films.” J. Am. Chem. Soc., 129, 7758, 2007
    [47] S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, “Graphene-based composite materials.” Nature, 442, 282, 2006
    [48] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition.” Nano Letters, 9, 30, 2009
    [49] D. S. Ginley and C. Bright, “Transparent conducting oxides” MRS Bull. 25, 15, 2000
    [50] T. J. Coutts, D. L. Young, X. Li, “Characterization of transparent conducting oxides” MRS Bull. 25, 58, 2000
    [51] M. A. Contreras, T. Barnes, J. Lagemaat, G. Rumbles, T. J. Coutts, C. Weeks, P. Glatkowski, I. Levitsky, J. Peltola, D. A. Britz, “Replacement of Transparent Conductive Oxides by Single-Wall Carbon Nanotubes in Cu(In,Ga)Se2-Based Solar Cells” J. Phys. Chem. C 111, 38, 2007
    [52] J. Y. Hwang, A. Nish, J. Doig, S. Douven, C. W. Chen, L. C. Chen, R. J. Nicholas, “Polymer Structure and Solvent Effects on the Selective Dispersion of Single-Walled Carbon Nanotubes” J. Am. Chem. Soc., 130, 3553, 2008
    [53] W. C. Chen, H.T. Lien, T. W. Cheng,| C. Su, C. W. Chong, A. Ganguly, K. H. Chen, L. C. Chen, “Side Group of Poly(3-alkylthiophene)s Controlled Dispersion of Single-Walled Carbon Nanotubes for Transparent Conducting Film” ACS Appl. Mater. Interfaces 7, 4616, 2015
    [54] A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G Bilger, A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films” Nature Materials 10, 857–861, 2011
    [55] M. A. Green, “Thin-Film Solar Cells: Review of Technologies and Commercial Status.” J Mater Sci-Mater El, 18, 2007, 15-19
    [56] T.A. Gessert, “Review of Photovoltaic Energy Production Using CdTe Thin-Film Modules.” Extended Abstract NREL/AB-520-44128, September 2008
    [57] B. V. Roedern, “Status of Amorphous and Crystalline Thin Film Silicon Solar Cell Activities.” Presented at the National Center for Photovoltaics and Solar Program Review Meeting Denver, Colorado March 24-26, 2003
    [58] J. Kessler, M. Bodegård, J. Hedström, and L. Stolt, “Baseline Cu(In,Ca)Se2 device production: control and statistical significance.” Sol. Energy Mater. Sol. Cells, 67(1-4), 67-76, 2001
    [59] R. Caballero, C. A. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, H. Z. Berlin, H. W. Schock, “The influence of Na on low temperature growth of CIGS thin film solar cells on polymide substrates.” Thin Solid Films, 517, 7, 2187-2190, 2009
    [60] B. A. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, H. W. Schock, “Cu2ZnSnS4 thin film solar cells by fast co-evaporation.” Prog. Photovolt: Res. Appl., 19, 93–96, 2011
    [61] K. Woo, Y. Kim, J. Moon, “A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells.” Energy Environ. Sci, 5, 5340-5345, 2012
    [62] J. J. Scragg, T. Ericson, X. Fontané, V. Izquierdo-Roca, A. Pérez-Rodríguez, T. Kubart, M. Edoff, C.Platzer-Björkman, “Rapid annealing of reactively sputtered precursors for Cu2ZnSnS4 solar cells.” Prog. Photovolt: Res. Appl., 22:10–17, 2014
    [63] T. K. Todorov, K. B. Reuter, D. B. Mitzi, “High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber.” Adv. Mater., 22, E156–E159, 2010
    [64] H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, “Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors.” Sol. Energy Mater. Sol. Cells, 49, 407-414, 1997
    [65] W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, D. B. Mitzi, “Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency.” Adv. Energy Mater., 4, 1301465, 2014
    [66] W. Shockley, H. J. Queisser, "Detailed Balance Limit of Efficiency of p-n Junction Solar Cells", J. Appl. Phys., 32, 510-519, 1961
    [67] J. Kessler, J. Norling, O. Lundberg, J. Wennerberg, L. Stolt, “Optimization of RF sputtered ZnO/ZnO:Al for Cu(In,Ga)Se2 based devices" Proceedings of the 16th European Photovoltaic Solar Energy Conference, Glasgow, 775, 2000
    [68] S. R. Kodigala, Thin Film Solar Cells from Earth Abundant Materials; Growth and Characterization of Cu2ZnSn(SSe)4 Thin Films and Their Solar Cell, Elsevier, USA, 2014
    [69] M. D. Archer, The past and present. In: Clean electricity from photovoltaics, ed. by M. D. Archer and R. Hill, pp. 1–32. London: Imperial College Press, 2001
    [70] A. L. Fahrenbruch and R. H. Bube, Fundamentals of solar cells. New York: Academic Press, 1983.
    [71] U. Rau, H. W. Schock, Cu(In,Ga)Se2 solar cells. In: Clean electricity from photovoltaics, ed. by M. D. Archer and R. Hill, pp. 277–345. London: Imperial College Press, 2001.
    [72] J. Sterner, ALD Buffer Layer Growth and Interface Formation on Cu(In,Ga)Se2 Solar Cell Absorbers, Doctoral thesis, 2004, retrieved from: http://uu.diva-portal.org/smash/get/diva2:164121/FULLTEXT01.pdf
    [73] T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, M. Kitagawa, “Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation.” Sol. Energy Mater. Sol. Cells, 67, 83, 2001
    [74] G. B. Turner, R. J. Schwartz, J. L. Gray, Band discontinuity and bulk vs. interface recombination in CdS/CuInSe2 solar cells, in Proceedings of the 20th IEEE PV Specialist Conf, Las Vegas, 1457, 1988
    [75] Y. Hashimoto, K. Takeuchi, K. Ito, “Band alignment at CdS/CuInS2 heterojunction.” Appl. Phys. Lett., 67, 980-982, 1995
    [76] L. Weinhardt, O. Fuchs, D. Groß, G. Storch, E. Umbach, “Band alignment at the CdS∕Cu(In,Ga)S2 interface in thin-film solar cells.” Appl. Phys. Lett., 86, 062109, 2005
    [77] T. Schulmeyer, R. Hunger, A. Klein, W. Jaegermann, S. Niki, “Photoemission study and band alignment of the CuInSe2(001)/CdS heterojunction.” Appl. Phys. Lett., 84 (16), 3067-3069, 2004
    [78] J. Kessler, K. O. Velthaus, M. Ruckh, R. Laichinger, H. W. Schock, "Chemical bath deposition of CdS on CuInSe2, etching effects and growth kinetics, in Proceedings of the 6th International Photovoltaic Science and Engineering Conference, New Delhi, India, 1005, 1992
    [79] T. Nakada, A. Kunioka, “Direct evidence of Cd diffusion into Cu(In,Ga)Se2 thin films during chemical-bath deposition process of CdS films.” Appl. Phys. Lett., 74 (17), 2444-2446, 1999
    [80] K. Ramanathan, R. N. Bhattacharya, J. E. Granata, J. Webb, D. W. Niles, M. A. Contreras, H. Wiesner, F. S. Hasoon, R. Noufi, Advances in the CIS research at NREL, in Proceedings of the 26th IEEE Photovoltaic Specialists Conference, 319, 1997
    [81] T. Nakada, K. Furumi, and A. Kunioka, “High-efficiency cadmium-free Cu(In,Ga)Se2 thin-film solar cells with chemically deposited ZnS buffer layers.” IEEE Transactions on Electron Devices, 46 (10), 2093-2097, 1999
    [82] S. Chen, A. Walsh, J. H. Yang, X. G. Gong, L. Sun, P. X. Yang, J. H. Chu, S. H. Wei, “Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells.” Phys. Rev. B, 83, 125201, 2011
    [83] H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, “Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors.” Sol. Energy Mater. Sol. Cells, 49, 407, 1997
    [84] G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, L. M. Peter, “Cu2ZnSnSe4 thin film solar cells produced by selenization of magnetron sputtered precursors.” Prog. Photovolt.: Res. Appl., 17, 315, 2009
    [85] A. Polizzotti, I. L. Repins, R. Noufi, S. H. Wei, D. B. Mitzi, “The state and future prospects of kesterite photovoltaics.” Energy Environ. Sci., 6, 3171-3182, 2013
    [86] A. Nagoya, R. Asahi, “Defect formation and phase stability of Cu2ZnSnS4 photovoltaic material” Phys. Rev. B, 81, 113202, 2010
    [87] K. Ito, T. Nakazawa, Electrical and optical properties of stannite-type quaternary semiconductor thin films, Jpn. J. Appl. Phys. 27, 2094, 1988
    [88] H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, “Development of Cu2ZnSnS4-based thin film solar cells.” Thin Solid Films, 517, 2455, 2009
    [89] T. M. Friedlmeier, N. Wieser, T. Walter, H. Dittrich, H. W. Schock, “Heterojunctions based on Cu2ZnSnS4 and Cu2ZnSnSe4 thin films, in: Proceedings of the 14 th European Photovoltaic Solar Energy Conference, 1242–1245, 1997
    [90] B. Shin, Y. Zhu, N. A. Bojarczuk, S. J. Chey, S. Guha, “Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9%power conversion efficiency with a TiN diffusion barrier.” Appl. Phys. Lett., 101, 053903, 2012
    [91] G. Brammertz, M. Buffière, O. Souhaib, H. Elanzeery, K. B. Messaoud, S. Sahayaraj, “Characterization of defects in 9.7% efficient Cu2ZnSnSe4-CdS-ZnO solar cells.” Appl. Phys. Lett., 103, 163904, 2013.
    [92] D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, S. Guha, “The path towards a high-performance solution-processed kesterite solar cell.” Sol. Energy Mater. Sol. Cells, 95, 1421, 2011
    [93] A. Weber, H. Krauth, S. Perlt, B. Schubert, I. Kotschau, S. Schorr, H. W. Schock, “Multi-stage evaporation of Cu2ZnSnS4 thin films.” Thin Solid Films, 517, 2524, 2009
    [94] S. Schorr, A. Weber, V. Honkimaki, H. W. Schock, “In-situ investigation of thekesterite formation from binary and ternary sulfides.” Thin Solid Films, 517, 2461, 2009
    [95] X. Yin, C. Tang, L. Sun, Z. Shen, H Gong, “Study on Phase Formation Mechanism of Non- and Near-Stoichiometric Cu2ZnSn(S,Se)4 Film Prepared by Selenization of Cu–Sn–Zn–S Precursors.” Chem. Mater., 26, 2005, 2014
    [96] J. J. Scragg, T. Ericson, T. Kubart, M. Edo , C. Platzer-Bjorkman, “Chemical Insights into the Instability of Cu2ZnSnS4 Films during Annealing.” Chem. Mater., 23, 4625, 2011
    [97] Q. Guo, H. W. Hillhouse, R. Agrawal, “Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells” J. Am. Chem. Soc., 131, 11672, 2009
    [98] H. Zhou, W. C. Hsu, H. S. Duan, B. Bob, W. Yang, T. B. Song, C. J. Hsu, Y. Yang, “CZTS nanocrystals: a promising approach for next generation thin film photovoltaics.” Energy Environ. Sci., 6, 2822, 2013
    [99] P. A. Fernandes, P. M. P. Saloméa, A. F. da Cunha, “Study of polycrystalline Cu2ZnSnS4 films by Raman scattering.” J. Alloys Compd., 509, 7600, 2011
    [100] A. Weber, R. Mainz, H.W. Schock, “On the Sn loss from thin films of the material system Cu–Zn–Sn–S in high vacuum.” J. Appl. Phys., 107, 013516, 2010
    [101] W. R. Grove, “On the electro-chemical polarity of gases.” Phil. Trans. R. Soc., 142, 87, 1852
    [102] S. R. Kodigala, “Thin Film Solar Cells from Earth Abundant Materials Growth and Characterization of Cu2ZnSn(S,Se)4 Thin Films and Their Solar Cells” London, UK, Elsevier Inc., 2014
    [103] The sputter deposition mechanism, retrieved from http://www.stoner.leeds.ac.uk/Research/TutSputtering
    [104] X. Song, X. Ji, M. Li, W. Lin, X. Luo, H. Zhang, “A Review on Development Prospect of CZTS Based Thin Film Solar Cells” INT J PHOTOENERGY, Volume 2014, Article ID 613173, 11 pages, 2014
    [105] H. Yoo, J. H. Kim, “Growth of Cu2ZnSnS4 Films by Sputtering with Post-Sulfurization” AIP Conf. Proc., 157, 1399, 2011
    [106] J. P. Leitao, N. M. Santos, P. A. Fernandes, P. M. P. Salome, A. F. da Cunha, J.C. Gonzalez, G. M. Ribeiro, F. M. Matinaga , “Photoluminescence and electrical study of fluctuating potentials in Cu2ZnSnS4-based thin films.” Phys. Rev. B, 84, 024120, 2011
    [107] J. J. Scragg, T. Ericson, X. Fontané, V. Izquierdo-Roca, A. Pérez-Rodríguez, T. Kubart, M. Edoff, C. Platzer-Björkman, “Rapid annealing of reactively sputtered precursors for Cu2ZnSnS4 solar cells.” Prog. Photovolt: Res. Appl., 22, 10, 2014
    [108] N. Momose, M. T. Htay, T. Yudasaka, S. Igarashi, T. Seki, S. Iwano, Y. Hashimoto1, K. Ito, “Cu2ZnSnS4 Thin Film Solar Cells Utilizing Sulfurization of Metallic Precursor Prepared by Simultaneous Sputtering of Metal Targets.” Jpn. J. Appl. Phys., 50, 01BG09, 2011
    [109] F. Liu, K. Zhang, Y. Lai, J. Li, Z. Zhang, Y. Liu, “Growth and Characterization of Cu2ZnSnS4 Thin Films by DC Reactive Magnetron Sputtering for Photovoltaic Applications.” Electrochem. Solid-State Lett., 13, H379, 2010
    [110] H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, “Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique.” Appl. Phys. Express, 1, 04120, 2008
    [111] J. Ge, W. Yu, H. Cao, J. Jiang, J. Ma, L. Yang, P. Yang, Z. Hu, J. Chu, “Fabrication of Cu2ZnSnS4 absorbers by sulfurization of Sn-rich precursors.” Phys. Status Solidi A, 209, 1493, 2012
    [112] J. Ge, Y. Wu, C. Zhang, S. Zuo, J. Jiang, J. Ma, , P. Yang, J. Chua, “Comparative study of the influence of two distinct sulfurization ramping rates on the properties of Cu2ZnSnS4 thin films.” Appl. Surf. Sci., 258 , 7250, 2012
    [113] D. Yoo, M. Choi, S. C. Heo, D. Kim, C. Chung, C. Choi, “RF-Magnetron Sputtered Kesterite Cu2ZnSnS4 Thin Film Using Single Quaternary Sputtering Target Prepared by Sintering Process.” J. Nanosci. Nanotechno., 13, 7734, 2013
    [114] K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W. S. Maw, H. Araki, K. Oishi, H. Katagiri, “Cu2ZnSnS4-type thin film solar cells using abundant materials” Thin Solid Films, 515, 5997, 2007
    [115] H. Katagiri, K. Jimbo, M. Tahara, H. Araki, K. Oishi, “The influence of the composition ratio on Cu2ZnSnS4-based thin film solar cells.” Mater. Res. Soc. Symp. Proc., 1165, M04, 2009
    [116] D. Park, D. Nam, S. Jung, S. An, J. Gwak, K. Yoon, J. H Yun, H. Cheong, “Optical characterization of Cu2ZnSnSe4 grown by thermal co-evaporation.” Thin Solid Films, 519, 7386, 2011
    [117] T. Tanaka, T. Sueishi, K. Saito, Q. Guo, M. Nishio, K. M. Yu, W. Walukiewicz, “Existence and removal of Cu2Se second phase in coevaporated Cu2ZnSnSe4 thin films.” J. Appl. Phys., 111, 053522, 2012
    [118] I. Repins, N. Vora, C. Beall, S.H. Wei, Y. Yan, M. Romero, G. Teeter, H. Du, B. To, M.Young, R. Noufi, “Kesterites and Chalcopyrites: A Comparison of Close Cousins.” Mater. Res. Soc., San Francisco, CA, NREL CP/5200, 2012
    [119] I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, R. Noufi, “Co-evaporated, Cu2ZnSnSe4 films and devices.” Sol. Energy Mater. Sol. Cells, 101, 154, 2012
    [120] P. U. Bhaskar, G. S. Babu, Y. B. K. Kumar, V. S. Raja, “Investigations on co-evaporated Cu2SnSe3 and Cu2SnSe3–ZnSe thin films.” Appl. Surf. Sci., 257, 8529, 2011
    [121] P. A. Fernandes, P. M. P. Salome, A. F. da Cun, “Precursors’ order effect on the properties of sulfurized Cu2ZnSnS4 thin films.” Semicond. Sci. Technol., 24, 105013, 2009
    [122] A. Fairbrother, L. Fourdrinier, X. Fontane,́ V. Izquierdo-Roca, M. Dimitrievska, A. Peŕez-Rodríguez, E. Saucedo, “Precursor Stack Ordering Effects in Cu2ZnSnSe4 Thin Films Prepared by Rapid Thermal Processing.” J. Phys. Chem. C, 118, 17291, 2014
    [123] J. J. Scragg, Studies of Cu2ZnSnS4 films prepared by sulfurisation of electrodeposited precursors, Doctoral thesis, 2010, retrieved from: http://opus.bath.ac.uk/22497/1/UnivBath_PhD_2010_J_Scragg.pdf
    [124] H. Katagiri, K. Jimbo, W. Shwe Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, “Development of CZTS-based thin film solar cells.” Thin Solid Films, 517, 2455-2460, 2009
    [125] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2Solar Cell with 81.2% Fill Factor” Prog. Photovolt. Res. Appl., 16, 235-239, 2008
    [126] V. Tunuguntla, W.C. Chen, P.H. Shih, I. Shown, Y.R. Lin, J.S. Hwang, C.H. Lee, L.C. Chen, K.H. Chen, “A nontoxic solvent based sol–gel Cu2ZnSnS4 thin film for high efficiency and scalable low-cost photovoltaic cells.” J. Mater. Chem., A, 3, 15324-15330, 2015
    [127] T. K. Todorov , J.Tang , S. Bag, O.Gunawan , T.Gokmen , Y. Zhu , D. B. Mitzi, “Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu2ZnSn(S,Se)4 Solar Cells.” Adv. Energy Mater., 3, 34-38, 2013
    [128] M. T. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, D. B. Mitzi, “Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells.” Energy Environ. Sci, 7, 1029-1036, 2014
    [129] Q. Guo, H. W. Hillhouse, R. Agrawal, “Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells.” J. Am. Chem. Soc., 131, 33, 11672-11673, 2009
    [130] S. C. Riha, B. A. Parkinson, A. L. Prieto, “Solution-Based Synthesis and Characterization of Cu2ZnSnS4 Nanocrystals.” J. Am. Chem. Soc., 131, 34, 12054-12055, 2009
    [131] Q. Guo, G. M. Ford, W. C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse, R. Agrawal, “Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals.” J. Am. Chem. Soc., 132, 49, 17384-17386, 2010
    [132] Y. Y. Cao, M. S. Denny, Jr., J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W.Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles.” J. Am. Chem. Soc., 134, 38, 15644-15647, 2012
    [133] J. A. Gerbec, D. Magana, A. Washington, G. F. Strouse, “Microwave-Enhanced Reaction Rates for Nanoparticle Synthesis” J. Am. Chem. Soc., 127, 15791-15800, 2005
    [134] B. L. Hayes, “Microwave Synthesis: Chemistry at the Speed of Light” CEM Publishing, Matthews, 2002
    [135] R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, J. Rousell, “The use of microwave ovens for rapid organic synthesis.” Tetrahedron Lett., 27, 279-282, 1986
    [136] R. J. Giguere, T. L. Bray, S. M. Duncan, G. Majetich, “Application of commercial microwave ovens to organic synthesis.” Tetrahedron Lett., 27, 4945-4948, 1986
    [137] B. Flynn, W. Wang, C. Chang, G. S. Herman, “Microwave assisted synthesis of Cu2ZnSnS4 colloidal nanoparticle inks.” Phys. Status Solidi A, 209, No. 11, 2186-2194, 2012
    [138] S. Mourdikoudis, L. M. Liz-Marzán, “Oleylamine in Nanoparticle Synthesis.” Chem. Mater., 25, 1465-1476, 2013
    [139]Y.Yin, A. P.Alivisatos, “Colloidal nanocrystal synthesis and the organic–inorganic interface.” Nature, 437, 664-670, 2005
    [140]H. Grisaru, O. Palchik, A. Gedanken, V. Palchik, M.A. Slifkin, A. M. Weiss, “Investigation of the Formation of CuInS2 Nanoparticles by the Oleylamine Route: Comparison of Microwave-Assisted and Conventional Syntheses” Inorg. Chem., 50, 193-200, 2011
    [141]M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, T. Raadik, “Photoluminescence and Raman study of Cu2ZnSn(SexS1−x)4 monograins for photovoltaic applications.” Thin Solid Films, 519 , 7403-7406, 2011
    [142] H. Yoo, J. H. Kim, “Growth of Cu2ZnSnS4 thin films using sulfurization of stacked metallic films.” Thin Solid Films, 518, 6567, 2010
    [143] P. A. Fernandes, P. M. P. Salomé, A. F. da Cunha, “Study of polycrystalline Cu2ZnSnS4 films by Raman scattering.” J. Alloys Compd., 509 , 7600-7606, 2011
    [144] Y. Bao, W.An, C. H. Turner, K. M.Krishnan, “The Critical Role of Surfactants in the Growth of Cobalt Nanoparticles” Langmuir, 26(1), 478-483, 2011
    [145] Y. Bao, M. Beerman, A. B. Pakhomov, K. M. Krishnan, “Controlled Crystalline Structure and Surface Stability of Cobalt Nanocrystals.” J. Phys. Chem. B, 109, 7220-7222, 2005
    [146] C. Gabriel, S. Gabriel, E. H. Grant, B. S. J. Halstead, D. M. P. Mingos, “Applications of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry.” Chem. Soc. Rev., 20, 1-47, 1991
    [147] C. Persson, C. P. Bj rkman, J. Malmstr m, T. T rndahl, M. Edoff, “Strong Valence-Band Offset Bowing of ZnO1−xSx Enhances p-Type Nitrogen Doping of ZnO-like Alloys.” Phys. Rev. Lett., 97, 146403, 2006
    [148] J. Vidal, S. Lany, M. d’Avezac, A. Zunger, A. Zakutayev, J. Francis, J. Tate, “Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS” Appl. Phys. Lett., 100, 032104, 2006
    [149]D. Tiwari, T. K. Chaudhuri, “Synthesis of Earth-abundant Cu2SnS3 for Solar Cells.” AIP Conf. Proc., 1349, 1295-1296, 2010
    [150] A. Sagade, R. Sharma, “Copper sulphide (CuxS) as an ammonia gas sensor working at room temperature.” Sens. Actuators, B., 133, 135-143, 2008
    [151] S. Chen, J. H.Yang, X. G. Gong, A. Walsh, S. H. Wei, “Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4” Phys. Rev. B., 81, 245204, 2010
    [152] M. A. Green, “Estimates of Te and In Prices from Direct Mining of Known Ores” Prog. Photovoltaic Res. Appl., 17, 347–359, 2009
    [153] M. Gloeckler, J. R. Sites, W. K. Metzger, “Grain-boundary recombination in Cu(In,Ga)Se2 solar cells” J. Appl. Phys., 98, 113704, 2005
    [154] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B To, R. Nouf, “19.9%-efficient ZnO/CdS/ CuInGaSe2 Solar Cell with 81.2% Fill Factor” Prog. Photovoltaic Res. Appl., 16, 235–239, 2008
    [155] M. Gloeckler, I. Sankin, Z. Zhao, “CdTe Solar Cells at the Threshold to 20% Efficiency” IEEE Journal of Photovoltaics, 3, 4, 1389-1393, 2013
    [156] R.W. Miles, K.M. Hynes, I. Forbes, “Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues” Prog. Cryst. Growth Charact. Mater., 51, 1-42, 2005
    [157] U. P. Singh, S. P. Patra, “Progress in Polycrystalline Thin-Film Cu(In,Ga)Se2 Solar Cells” Int. J. Photoenergy., Vol. 2010, Article ID 468147, 19 pages, 2010
    [158] M. P. Suryawanshi, G. L. Agawane, S. M. Bhosale, S. W. Shin, P. S. Patil, J. H. Kim, A. V. Moholkar, “CZTS based thin film solar cells: a status review” Mater. Technol., 28, 1&2, 98-109, 2013
    [159] D. B. Khadka, S. Y. Kim, J. H. Kim, “Effects of Ge Alloying on Device Characteristics of Kesterite-Based CZTSSe Thin Film Solar Cells” J. Phys. Chem. C, 120, 8, 4251–4258, 2016
    [160] Q. Guo, H. W. Hillhouse, R. Agrawal, “Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells” J. Am. Chem. Soc., 131, 11672–11673, 2009
    [161] F. Jiang, S. Ikeda, T. Harada, M. Matsumura, “Pure Sulfi de Cu2ZnSnS4 Thin Film Solar Cells Fabricated by Preheating an Electrodeposited Metallic Stack” Adv. Energy Mater., 4, 1301381, 2014
    [162] G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg , L. M. Peter, “Cu2ZnSnSe4 Thin Film Solar Cells Produced by Selenisation of Magnetron Sputtered Precursors” Prog. Photovol-taic Res. Appl., 17, 315–319, 2009
    [163] E. A Brandes, “Smithells Metals Reference Book: Sixth Edition” published by Butterworths, United Kingdom, 1983 ISBN 10: 0408710535 / ISBN 13: 9780408710534
    [164] R. A. Wibowo, S. A. Moeckel, H. Yoo, C. Hetzner, A. Hoelzing, P. Wellmann, R. Hock, “Intermetallic compounds dynamic formation during annealing of stacked elemental layers and its influences on the crystallization of Cu2ZnSnSe4 films, Mater” Chem. Phys., 142, 311-317, 2013
    [165] X. Yin, C. Tang, L. Sun, Z. Shen, H. Gong, “Study on Phase Formation Mechanism of Non- and Near- Stoichiometric Cu2ZnSn(S,Se)4 Film Prepared by Selenization of Cu− Sn−Zn−S Precursors” Chem. Mater., 26, 2005−2014, 2014
    [166] M. Grossberg, J. Krustok, K. Timmo, M. Altosaar, “Radiative recombination in Cu2ZnSnSe4 monograins studied by photoluminescence spectroscopy” Thin Solid Films, 517 2489–2492, 2009
    [167] G. Marcano, C. Rincón, L. M. de Chalbaud, D. B. Bracho, G. S. Pérez, “Crystal growth and structure, electrical, and optical characterization of the semiconductor Cu2SnSe3” J. Appl. Phys., 90, 1847-1853, 2001
    [168] J. J. Scragg, T. Ericson, T. Kubart, M. Edoff, C. Platzer-Bjorkman, “Chemical Insights into the Instability of Cu2ZnSnS4 Films during Annealing” Chem. Mater., 23, 4625–4633. 2011
    [169] X. Zeng, K. F. Tai, T. Zhang, C. W. J. Ho, X. Chen, A. Huan, T. C. Sum, L. H. Wonga, “Cu2ZnSn(S,Se)4 kesterite solar cell with 5.1% efficiency using spray pyrolysis of aqueous pre-cursor solution followed by selenization” Sol. Energy Mater. Sol. Cells, 124, 55–60, 2014
    [170] Wang, G.; Wang, S. Y.; Cui, Y.; Pan, D. C. “A Novel and Versatile Strategy to Prepare Metal−Organic Molecular Precursor Solutions and Its Application in Cu(In,Ga)(S,Se)2 Solar Cells.” Chem. Mater., 24, 3993−3997, 2012
    [171] Fella, C. M.; Uhl, A. R.; Hammond, C.; Hermans, I.; Romanyuk, Y. E.; Tiwari, A. N. “Formation mechanism of Cu2ZnSnSe4 absorber layers during selenization of solution deposited metal precursors.” J. Alloys Compd., 567, 102−106, 2013
    [172] Son, D. H.; Kim, D. H.; Park, S. N.; Yang, K. J.; Nam, D.; Cheong, H.; Kang, J. K. “Growth and Device Characteristics of CZTSSe Thin-Film Solar Cells with 8.03% Efficiency.” Chem. Mater., 27, 5180–5188, 2015
    [173] Scragg, J.J.; Ericson, T.; Fontané, X.; Izquierdo-Roca, V.; Pérez-Rodríguez, A.; Kubart, T.; Edoff, M.; Platzer-Björkman, C. “Rapid annealing of reactively sputtered precursors for Cu2ZnSnS4 solar cells.” Prog. Photovolt: Res. Appl., 22, 10–17, 2014
    [174] Redinger, A.; Berg, D. M.; Dale, P. J.; Siebentritt, S. “The Consequences of Kesterite Equilibria for Efficient Solar Cells.” J. Am. Chem. Soc., 133, 3320−3323, 2011
    [175] Scragg, J. J.; Ericson, T.; Kubart, T.; Edoff, M.; Platzer-Björkman, C. “Chemical Insights into the Instability of Cu2ZnSnS4 Films during Annealing.” Chem. Mater., 23, 4625−4633, 2011
    [176] Gunawan, O.; Todorov, T. K.; Mitzi, D. B. “Loss mechanisms in hydrazine-processed Cu2ZnSn(Se,S)4 solar cells.” Appl. Phys. Lett., 97, 233506, 2010
    [177] Shin, B.; Bojarczuk, N. A.; Guha, S. “On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with molybdenum back contact.” Appl. Phys. Lett., 102, 091907, 2013
    [178] Fairbrother, A.; Fourdrinier, L.; Fontane,́ X.; Izquierdo-Roca, V.; Dimitrievska, M.; Peŕez-Rodríguez, A.; Saucedo, E. “Precursor Stack Ordering Effects in Cu2ZnSnSe4 Thin Films Prepared by Rapid Thermal Processing.” J. Phys. Chem. C, 118, 17291−17298, 2014
    [179] Chalapathy, R.B.V.; Jung, G.S.; Ahn, B.T. “Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells.” Sol. Energy Mater. Sol. Cells, 95, 3216-3221, 2011
    [180] Date, M.; Tu, K.N.; Shoji, T.; Fujiyoshi, M.; Sato, K. “Interfacial reactions and impact reliability of Sn‐Zn solder joints on Cu or electroless Au/Ni(P) bond‐pads.” J. Mater. Res., 19, 10, 2887‐2896, 2004
    [181] Fairbrother, A.; Fontane ́, X.; Izquierdo-Roca, V.; Espı ́ndola-Rodrı ́guez, M.; Lo ́pez-Marino, S.; Placidi, M.; Calvo-Barrio, L.; Pe ́ rez-Rodrı ́guez, A.; Saucedo, E. “On the formation mechanisms of Zn-rich Cu2ZnSnS4 films prepared by sulfurization of metallic stacks.” Sol. Energy Mater. Sol. Cells, 112, 97–105, 2013
    [182] Tao, J.; Zhang, K.; Zhang, C.; Chen, L.; Cao, H.; Liu, J.; Jiang, J.; Sun, L.; Yang, P.; Chu, J. “A sputtered CdS buffer layer for co-electrodeposited Cu2ZnSnS4 solar cells with 6.6% efficiency.” Chem. Commun., 51, 10337-10340, 2015
    [183] Fernandesa, P.A.; Saloméa, P.M.P.; da Cunha, A.F. “Study of polycrystalline Cu2ZnSnS4 films by Raman scattering.” J. Alloys Compd., 509, 7600–7606, 2011
    [184] Q. Cao, Rogers, J. A. “Ultrathin Films of Single-Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects.” Adv. Mater., 21, 29−53, 2009
    [185] C. Feng, K. Liu, J. S. Wu, L. Liu, J. S. Cheng, Y. Zhang, Y. H. Sun, Q. Q. Li, S. S. Fan, K. L. Jiang, “Flexible, Stretchable, Transparent Conducting Films Made from Super Aligned Carbon Nanotubes.” Adv. Funct. Mater., 20, 885−891, 2010
    [186] H. Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, Y. H. Lee, “Effect of Acid Treatment on Carbon Nanotube-Based Flexible Transparent Conducting Films.” J. Am. Chem. Soc., 129, 7758−7759, 2007
    [187] L. Hu, D. S. Hecht, G. Grüner, “Carbon Nanotube Thin Films: Fabrication, Properties, and Applications.” Chem. Rev., 110, 5790−5844, 2010
    [188] J. W. Jo, J. W. Jung, J. U. Lee, W. H. Jo, “Fabrication of Highly Conductive and Transparent Thin Films from Single-Walled Carbon Nanotubes Using a New Non-Ionic Surfactant via Spin Coating.” ACS Nano, 4, 5382−5388, 2010
    [189] R. C. Tenent, T. M. Barnes, J. D. Bergeson, A. J. Ferguson, B. To, L. M. Gedvilas, M. J. Heben, J. L. Blackburn, “Ultrasmooth, Large-Area, High-Uniformity, Conductive Transparent Single-Walled-Carbon-Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying.” Adv. Mater., 21, 3210−3216, 2009
    [190] F. Chen, B. Wang, Y. Chen, L. J. Li, “Toward the Extraction of Single Species of Single-Walled Carbon Nanotubes Using Fluorene-Based Polymers.” Nano Lett., 7, 3013−3017, 2007
    [191] M. C. Hersam, “Progress Towards Monodisperse Single-Walled Carbon Nanotubes.” Nat. Nanotechnol., 3, 387−394, 2008
    [192] X. W. Lou, L. A. Archer, Z. Yang, “Hollow Micro-/Nanostructures: Synthesis and Applications.” Adv. Mater., 20, 3987−4019, 2008
    [193] H. J. Shin, S. M. Kim, S.-M. Yoon, A. Benayad, K. K. Kim, S. J. Kim, H. K. Park, J. Y. Choi, Y. H. Lee, “Tailoring Electronic Structures of Carbon Nanotubes by Solvent with Electron-Donating and-Withdrawing Groups.” J. Am. Chem. Soc., 130, 2062−2066, 2008
    [194] X. Tu, S. Manohar, A. Jagota, M. Zheng, “DNA Sequence Motifs for Structure-Specific Recognition and Separation of Carbon Nanotubes.” Nature, 460, 250−253, 2009
    [195] M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richarson, N. G. Tasset, “DNA-Assisted Dispersion and Separation of Carbon Nanotubes.” Nat. Mater., 2, 338−342, 2003
    [196] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler, “Transparent, Conductive Carbon Nanotube Films.” Science, 305, 1273−1276, 2004
    [197] P. X. Hou, B. Yu, Y. Su, C. Shi, L. L. Zhang, C. Liu, S. S. Li, J. H. Du, H. M. Chenget, “Double-Wall Carbon Nanotube Transparent Conductive Films with Excellent Performance.” J. Mater. Chem. A, 2, 1159−1164, 2014
    [198] B. Dan, G. C. Irvin, M. Pasquali, “Continuous and Sscalable Fabrication of Transparent Conducting Carbon Nanotube Films.” ACS Nano, 3, 835−843, 2009
    [199] S. Kim, J. Yim, X. Wang, D. D. C. Bradley, S. Lee, J. C. deMello, “Spin and Spray Deposited Single Walled Carbon Nnanotube Electrodes for Organic Solar Cells.” Adv. Funct. Mater., 20, 2310−2316, 2010
    [200] K. Peng, L. Q. Liu, Y. Gao, M. Z. Qu, Z. Zhang, “Fabrication of High Optical Transparent and Conductive SWNT Based Transparent Conducting Film on Flexible Plastic Substrate Using Ozone as a Redox Dopant.” J. Nanosci. Nanotechnol., 10, 7386−7389, 2010
    [201] L. Rowley, G. Irvin, C. Anderson, D. Majumdar, “Coating Compositions Containing Single Wall Carbon Nanotubes.” US patent 2006/0188723 A1, 2006.
    [202] S. B. Yang, B. S. Kong, D. H. Jung, Y. K. Baek, C. S. Han, S. K. Oh, H. T. Jung, “Recent Advances in Hybrids of Carbon Nanotube Network Films and Nanomaterials for Their Potential Applications as Transparent Conducting Films.” Nanoscale, 3, 1361−1373, 2011
    [203] J. Y. Hwang, A. Nish, J. Doig, S. Douven, L. C. Chen, R. J. Nicholas, “Polymer Structure and Solvent Effects on the Selective Dispersion of Single-Walled Carbon Nanotubes.” J. Am. Chem. Soc., 130, 3543−3553, 2008
    [204] A. Nish, J. Y. Hwang, J. Doig, R. J. Nicholas, “Highly Selective Dispersion of Single-Walled Carbon Nanotubes Using Aromatic Polymers.” Nat. Nanotechnol., 2, 640−646, 2007
    [205] E. Mena-Osteritz, “Superstructures of Self-Organizing Thiophenes.” Adv. Mater., 14, 609−616, 2002
    [206] M. Giulianini1, E. R. Waclawik, J. M. Bell, M. D. Crescenzi, P. Castrucci, M. Scarselli, N. Motta, “Poly(3-hexyl-thiophene) Coil-Wrapped Single Wall Carbon Nanotube Investigated by Scanning Tunneling Spectroscopy.” Appl. Phys. Lett., 95, 013304−013303, 2009
    [207] H. W. Lee, Y. Yoon, S. Park, J. H. Oh, S. Hong, L. S. Liyanage, H. L. Wang, S. Morishita, N. Patil, Y. J. Park, J. J. Park, A. Spakowitz, G. Galli, F. Gygi, P. H. S. Wong, J. B. H. Tok, J. M. Kim, Z. Baoet, “Selective Dispersion of High Purity Semiconducting Single-Walled Carbon Nanotubes with Regioregular Poly(3- alkylthiophene)s.” Nat. Commun., 2, 541, 2011
    [208] P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, J. J. Boland, “Electrical Connectivity in Single-Walled Carbon Nanotube Networks.” Nano Lett., 9, 3890−3895, 2009
    [209] J. Y. Lee, J. S. Kim, K. A. Hyeok, K. Lee, D. Y. Kim, D. J. Bae, Y. H. Lee, “Electrophoretic and Dynamic Light Scattering in Evaluating Dispersion and Size Distribution of Single-Walled Carbon Nanotubes.” J. Nanosci. Nanotechnol., 5, 1045−1049, 2005
    [210] R. Shvartzman-Cohen, E. Nativ-Roth, E. Baskaran, Y. Levi-Kalisman, I. Szleifer, R. Yerushalmi-Rozen, “Selective Dispersion of Single-Walled Carbon Nanotubes in the Presence of Polymers: the Role of Molecular and Colloidal Length Scales.” J. Am. Chem. Soc., 126, 14850−14857, 2004
    [211] M. Bernardi, M. Giulianini, J. C. Grossman, “Self-Assembly and its Impact on Interfacial Charge Transfer in Carbon Nanotube/P3HT Solar Cells.” ACS Nano, 4, 6599−6606, 2010
    [212] C. Wei, “Adsorption of an Alkane Mixture on Carbon Nanotubes: Selectivity and Kinetics.” Phys. Rev. B, 80, 085409, 2009
    [213] B. White, S. Banerjee, S. O’Brien, N. J. Turro, I. P. Herman, “Zeta-Potential Measurements of Surfactant-Wrapped Individual Single-Walled Carbon Nanotubes.” J. Phys. Chem. C, 111, 13684−13690, 2007
    [214] J. Geng, T. Zeng, “Influence of Single-Walled Carbon Nanotubes Induced Crystallinity Enhancement and Morphology Change on Polymer Photovoltaic Devices.” J. Am. Chem. Soc., 128, 16827−16833, 2006
    [215] Y. Kanai, J. C. Grossman, “Role of Semiconducting and Metallic Tubes in P3HT/Carbon-Nanotube Photovoltaic Heterojunctions: Density Functional Theory Calculations.” Nano Lett., 8, 908−912, 2008

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE