研究生: |
陳鼎元 |
---|---|
論文名稱: |
低分子量硫酸軟骨素A型對於介白素1β所誘導之人類軟骨肉瘤細胞MMP-13表現量之影響 Effect of Low Molecular Weight Chondroitin Sulfate Type A on IL-1β-induced MMP-13 Expression in Human Chondrosarcoma Cell |
指導教授: | 林立元 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | 低分子量硫酸軟骨素A型 、人類軟骨肉瘤細胞 |
外文關鍵詞: | MMP-13, Low Molecular Weight Chondroitin Sulfate |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本實驗中,我們利用人類軟骨肉瘤細胞SW1353探討低分子量硫酸軟骨素A型對介白素1β所誘導特定基因表現的作用,實驗中我們利用即時定量聚合酶鏈鎖反應來分析人類軟骨肉瘤細胞SW1353中MMP-1、MMP-13 和IL-1β基因表現的程度。結果顯示MMP-1、MMP-13 和IL-1β基因表現都會受到介白素1β的處理而上升,然而當將2、4、6、8、10、12、14單位的低分子量硫酸軟骨素A型混合處理細胞後發現可以抑制經由IL-1β所誘導的MMP-13基因表現,但無法抑制經由IL-1β所誘導的MMP-1以及IL-1β基因表現。我們也利用了西方點墨法來觀察MMP-13蛋白質表現的情形,發現2、4、6、8、10、12、14單位的低分子量硫酸軟骨素A型混合物也可以抑制住經由IL-1β所誘導的MMP-13蛋白質表現。接下來我們更進一步地發現10到14單位的低分子量硫酸軟骨素A型的混合物對於IL-1β所誘導的MMP-13基因以及蛋白質表現具有最佳的抑制作用。我們也用西方點墨法分析證實低分子量硫酸軟骨素A型並非是透過抑制p38以及JNK1這兩種訊號傳遞路徑來達到抑制MMP-13基因以及蛋白質的表現。
In this study,we investigate the role of low molecular weight chondroitin sulfate type-A (LMW-CSA) on the expression of interleukin-1 beta(IL-1β)-mediated gene expressions of osteoarthritis in cultured human chondrosarcoma (SW1353) cells. Quantitative real-time polymerase chain reaction (Q-PCR) was used to analyze MMP-1、MMP-13 and IL-1β gene expressions after treating SW1353 with IL-1β.Results show that IL-1β-induced MMP-1 and IL-1β gene expressions were not altered in the presence of mixture of 2、4、6、8、10、12、14 units of LMW-CSA . However IL-1β-induced MMP-13 gene expression were reduced when the mixture of 2、4、6、8、10、12、14 unit LMW-CSA was given. We also observe protein level of MMP-13 was reduced after the addition of mixture of 2、4、6、8、10、12、14 units LMW-CSA. Further analysis shows that mixture of 10-14 units of LMW-CSA is more effective in the inhibition of MMP-13 gene expression and protein level. Our results also suggest that the inhibitory effect is not through p38 and JNK1 pathways.
Agrati, A.M., De Bartolo, G. and Palmieri, G. (1992) [Heparan sulfate: its
kinetic effects on fibrinolytic-coagulative parameters after oral
administration]. Minerva Med, 83, 533-536.
Aigner, T., Soeder, S. and Haag, J. (2006) IL-1beta and BMPs--interactive
players of cartilage matrix degradation and regeneration. Eur Cell Mater,
12, 49-56; discussion 56.
Arnold, E.L. and Arnold, W.J. (2001) Use of glucosamine and chondroitin
sulfate in the management of osteoarthritis. J Am Acad Orthop Surg, 9,
352-353.
Bourgeois, P., Chales, G., Dehais, J., Delcambre, B., Kuntz, J.L. and
Rozenberg, S. (1998) Efficacy and tolerability of chondroitin sulfate 1200
mg/day vs chondroitin sulfate 3 x 400 mg/day vs placebo. Osteoarthritis
Cartilage, 6 Suppl A, 25-30.
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye
binding. Anal Biochem, 72, 248-254.
Davies, N.M. and Jamali, F. (2004) COX-2 selective inhibitors cardiac
toxicity: getting to the heart of the matter. J Pharm Pharm Sci, 7, 332-336.
Dawes, J., Hodson, B.A. and Pepper, D.S. (1989) The absorption, clearance
and metabolic fate of dermatan sulphate administered to man--studies using
a radioiodinated derivative. Thromb Haemost,62, 945-949.
Deal, C.L. and Moskowitz, R.W. (1999) Nutraceuticals as therapeutic agents
in osteoarthritis. The role of glucosamine, chondroitin sulfate, and
collagen hydrolysate. Rheum Dis Clin North Am, 25, 379-395.
El Mabrouk, M., Sylvester, J. and Zafarullah, M. (2007) Signaling pathways
implicated in oncostatin M-induced aggrecanase-1 and matrix
metalloproteinase-13 expression in human articular chondrocytes. Biochim
Biophys Acta, 1773, 309-320.
Fernandes, J.C., Martel-Pelletier, J., Lascau-Coman, V., Moldovan, F.,
Jovanovic, D., Raynauld, J.P. and Pelletier, J.P. (1998) Collagenase-1 and
collagenase-3 synthesis in normal and early experimental osteoarthritic
canine cartilage: an immunohistochemical study. J Rheumatol, 25, 1585-1594.
Flannery, C.R., Lark, M.W. and Sandy, J.D. (1992) Identification of a
stromelysin cleavage site within the interglobular domain of human aggrecan.
Evidence for proteolysis at this site in vivo in human articular cartilage.
J Biol Chem, 267, 1008-1014.
Gajraj, N.M. and Joshi, G.P. (2005) Role of cyclooxygenase-2 inhibitors in
postoperative pain management. Anesthesiol Clin North America, 23, 49-72.
Goldring, M.B. (2000) The role of the chondrocyte in osteoarthritis.
Arthritis Rheum, 43, 1916-1926.
Hathcock, J.N. and Shao, A. (2007) Risk assessment for glucosamine and
chondroitin sulfate. Regul Toxicol Pharmacol, 47, 78-83.
Imanari, T., Washio, Y., Huang, Y., Toyoda, H., Suzuki, A. and Toida, T.(1999)
Oral absorption and clearance of partially depolymerized fucosyl chondroitin
sulfate from sea cucumber. Thromb Res, 93, 129-135.
Kim, H.A., Cho, M.L., Choi, H.Y., Yoon, C.S., Jhun, J.Y., Oh, H.J. and Kim,
H.Y. (2006) The catabolic pathway mediated by Toll-like receptors in human
osteoarthritic chondrocytes. Arthritis Rheum, 54, 2152-2163.
Lane, N.E. and Thompson, J.M. (1997) Management of osteoarthritis in the
primary-care setting: an evidence-based approach to treatment. Am J Med, 103,
25-30.
Lauder, S.N., Carty, S.M., Carpenter, C.E., Hill, R.J., Talamas, F.,
Bondeson, J., Brennan, P. and Williams, A.S. (2007) Interleukin-1{beta}
induced activation of nuclear factor-{kappa}b can be inhibited by novel
pharmacological agents in osteoarthritis. Rheumatology (Oxford).
Lecaille, F., Kaleta, J. and Bromme, D. (2002) Human and parasitic
papain-like cysteine proteases: their role in physiology and pathology and
recent developments in inhibitor design. Chem Rev, 102, 4459-4488.
Lindblad, M., Lagergren, J. and Garcia Rodriguez, L.A. (2005) Nonsteroidal
anti-inflammatory drugs and risk of esophageal and gastric cancer. Cancer
Epidemiol Biomarkers Prev, 14, 444-450.
Martel-Pelletier, J., Alaaeddine, N. and Pelletier, J.P. (1999) Cytokines
and their role in the pathophysiology ofosteoarthritis.Front Biosci, 4,
694-703.
Meachim, G. and Collins, D.H. (1962) Cell counts of normal and osteoarthritic
articular cartilage in relation to the uptake of sulphate (35SO4) in vitro.
Ann Rheum Dis, 21, 45-50.
Mengshol, J.A., Vincenti, M.P., Coon, C.I., Barchowsky, A. and Brinckerhoff,
C.E. (2000) Interleukin-1 induction of collagenase 3 (matrix
metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun
N-terminal kinase, and nuclear factor kappaB: differential regulation of
collagenase 1 and collagenase 3. Arthritis Rheum, 43, 801-811.
Moldovan, F., Pelletier, J.P., Hambor, J., Cloutier, J.M. and
Martel-Pelletier, J. (1997) Collagenase-3 (matrix metalloprotease 13) is
preferentially localized in the deep layer of human arthritic cartilage in
situ: in vitro mimicking effect by transforming growth factor beta. Arthritis
Rheum, 40, 1653-1661.
Nerucci, F., Fioravanti, A., Cicero, M.R., Collodel, G. and Marcolongo, R.
(2000) Effects of chondroitin sulfate and interleukin-1beta on human
chondrocyte cultures exposed to pressurization: a biochemical and
morphological study. Osteoarthritis Cartilage, 8, 279-287.
Omata, T., Itokazu, Y., Inoue, N. and Segawa, Y. (2000) Effects of chondroitin
sulfate-C on articular cartilage destruction in murine collagen-induced
arthritis. Arzneimittelforschung, 50, 148-153.
Pattoli, M.A., MacMaster, J.F., Gregor, K.R. and Burke, J.R.(2005) Collagen
and aggrecan degradation is blocked in interleukin-1-treated cartilage
explants by an inhibitor of IkappaB kinase through suppression of
metalloproteinase expression. J Pharmacol Exp Ther, 315, 382-388.
Pei, Y., Harvey, A., Yu, X.P., Chandrasekhar, S. and Thirunavukkarasu, K.
(2006) Differential regulation of cytokine-induced MMP-1 and MMP-13
expression by p38 kinase inhibitors in human chondrosarcoma cells: potential
role of Runx2 in mediating p38 effects. Osteoarthritis Cartilage, 14,
749-758.
Pettipher, E.R., Higgs, G.A. and Henderson, B. (1986) Interleukin 1 induces
leukocyte infiltration and cartilage proteoglycan degradation in the
synovial joint. Proc Natl Acad Sci U S A, 83, 8749-8753.
Pfaffl, M.W. (2001) A new mathematical model for relative quantification in
real-time RT-PCR. Nucleic Acids Res, 29, e45.Pipitone, V.R. (1991)
Chondroprotection with chondroitinsulfate.Drugs Exp Clin Res, 17, 3-7.
Quarto, R., Dozin, B., Bonaldo, P., Cancedda, R. and Colombatti, A. (1993)
Type VI collagen expression is upregulated in the early events of chondrocyte
differentiation. Development, 117, 245-251.
Rothwell, A.G. and Bentley, G. (1973) Chondrocyte multiplication in
osteoarthritic articular cartilage. J Bone Joint Surg Br, 55, 588-594.
Saklatvala, J. (2007) Inflammatory signaling in cartilage: MAPK and
NF-kappaB pathways in chondrocytes and the use of inhibitors for research
into pathogenesis and therapy of osteoarthritis. Curr Drug Targets, 8,
305-313.
Sandell, L.J. and Aigner, T. (2001) Articular cartilage and changes in
arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res,
3, 107-113.
Shlopov, B.V., Gumanovskaya, M.L. and Hasty, K.A. (2000) Autocrine
regulation of collagenase 3 (matrix metalloproteinase 13) during
osteoarthritis. Arthritis Rheum, 43, 195-205.
Tetlow, L.C., Adlam, D.J. and Woolley, D.E. (2001) Matrix metalloproteinase
and proinflammatory cytokine production by chondrocytes of human
osteoarthritic cartilage: associations with degenerative changes. Arthritis
Rheum, 44, 585-594.
Wu, Y.S., Hu, Y.Y., Yang, R.F., Wang, Z. and Wei, Y.Y. (2007) The matrix
metalloproteinases as pharmacological target in osteoarthritis: Statins may
be of therapeutic benefit. Med Hypotheses.