簡易檢索 / 詳目顯示

研究生: 洪繼正
Chi-Cheng Hung
論文名稱: 覆晶封裝底部充填製程之三維CAE分析
指導教授: 張榮語
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 73
中文關鍵詞: 覆晶封裝化學流變三維流動前進波前自由面有限體積法表面張力底部充填
外文關鍵詞: Flip chip, chemorheology, three-dimensional flow, advancing front, free surface, finite volume method, surface tension, underfill
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究主要是以理論分析探討覆晶封裝中,點膠式縫隙填膠製程( Dispensing Process for Flip Chip Underfill)的充填過程;此外並考慮熱固性封裝材料的化學流變特性,針對溫度、轉化率作一詳細的探討。利用建立在三維流動的共位體心有限體積法(Collocated Cell- Centered Finite Volume Method)計算在封裝過程中的流場分佈,並配合求解體積分率方程式的自由面計算方法來預測波前的形狀及位置;針對表面張力的處理,則是導入連續表面張力模式(CSF Model),黏度模式則是採用Castro-Macosko模式,以考慮轉化率與剪切率的影響。
    由於在覆晶中,錫球之間的間距與晶片和基板之間的間距差異不大,所以傳統常用的Hele-Shaw流動近似理論並不適用。本研究則是利用三維的分析技術來模擬整個封裝的流動,並進一步探討溫度、點膠方式與錫球對於充填流場的影響。


    In this paper, the dispensing process for flip chip underfill is discussed by theoretical analysis. Above all the simulation results have considered the properties of chemorheology for the thermosetting polymer, especially the effect of temperature and conversion. Using the collocated cell-centered finite volume method based on three-dimensional calculates the flow field during underfilling process, and predicts the shape and movement of the melt front with time with the method of computation of free surface which solves the volume fraction equation. In regard to the calculation of surface tension, we use continuum surface force (CSF) model. Castro-Macosko Model which considers the effect of conversion and shear rate is induced for providing a described of the resin viscosity change.
    Because the gap between bumps is slightly larger or smaller than the gap between chip and substrate, Hele-Shaw approximation is not suitable. In the work, we simulation the flow during underfilling process by using the three-dimensional technology and study the effect of temperature , dispensing pattern and bumps on the process further.

    中文摘要 I Abstract II 目 錄 III 圖 目 錄 VI 表 目 錄 IX 符 號 說 明 X 第一章 、緒論 1 1-1 研究目的與動機 1 1-2 塑膠封裝—PEM 2 1-2-1 IC封裝的功能 2 1-2-2 IC封裝的種類 4 1-3 覆晶封裝 5 1-3-1 覆晶封裝簡介 5 1-3-2 覆晶封裝製程 7 1-4 底部充填液狀封膠 7 1-4-1 底部充填液狀封膠的製程與功能 7 1-4-2 液狀底部充填封裝材料的特性 10 第二章 、文獻回顧 13 2-1 底部充填分析 13 2-2 硬化反應動力模式 14 2-3 化學流變性黏度模式 17 2-4 體心共位有限體積法 20 2-5 自由面計算 21 2-6 表面張力模式 23 第三章 、研究方法 25 3-1 理論分析 25 3-1-1 基本假設 25 3-1-2 統御方程式 26 3-2 數值方法推導 29 3-2-1 動量方程式的離散計算 29 3-2-2 連續方程式的離散計算 31 3-2-3 SIMPLE去耦合疊代法 33 3-2-4 能量方程式的離散計算 33 3-2-5 體積分率輸送方程式的離散計算 34 3-2-6 表面張力模式 35 3-2-7 反應動力方程式 37 3-3 邊界條件 38 3-4 計算流程 39 第四章 、結果與討論 41 4-1 簡介 41 4-2 例題測試與程式驗證 42 4-2-1 二維表面張力對平衡狀態液滴影響之測試 42 4-2-2 二維表面張力對非平衡狀態液滴影響之測試 44 4-2-3 二維牆壁吸附邊界條件之測試 45 4-2-4 兩平板間毛細吸附現象 46 4-3 三維覆晶封裝底部充填分析 49 4-3-1 簡介 49 4-3-2 材料參數 49 4-3-3 幾何形狀與成型條件 52 4-3-4 流動波前 57 4-3-5 溫度場與轉化率分佈 62 第五章 、結論與展望 68 參考文獻 70

    1.黃衍任,陳佳榆,”覆晶對準技術探討”,機械工業雜誌(1999)
    2.D. Suryanarayana, T.Y. Wu, and J.A. Varcoe, ”Encapsulants used in Flip-Chip Package”,Pro. 43rd ECTC(1993)
    3.Seijin Han and K.K. Wang, ”Study on the Pressurized Underfill Encapsulation of Flip Chips”, IEEE Transcations on Components, Packaging, and Manufcaturing Technology-Part B, Vol. 20.,NO. 4(1997)
    4.李宗銘,”覆晶構裝用液狀封裝材料技術與應用”,工業材料(1997)
    5.A.A.O. Tay, Z.M. Huang, J.H. Wu, and C.Q. Cui, “Numerical Simulation of the Flip-Chip Underfilling Process”, IEEE/CPMT Electronic Packaging Technology Conference.(1997)
    6.M.K. Schwebert and W.H. Leong, “Underfill Flow as Viscous Flow Between Parallel Plates Driven by Capillary Action”, IEEE/ CPMT Int. Electronics Manufacturing Tecnology Symposium, vol. 19, April, p8-13 (1995)
    7.Sejin Han and K.K. Wang, “Experimental and Analysis of the Flow of Encapsulant During Underfill Encapsulation of Flip-Chips”, 1996 Electronic Components and Technology Conference.
    8.G.. Ni, M.H. Gordan, W.F. Schmidt, and A. Muyshondt, “Experimental and Numerical Study of Underfill Encapsulation of Flip-Chips Using Conductive Expoxy Polymer Bumps”, 1997 Electronic Components and Technology Conference.
    9.Y. Guo, G..L. Lehmann, T.Driscoll, and E.J. Cotts, “A Model of the Underfill Flow Process: Particle Distribution Effects ”, 1999 Electronic Component and Technology Conference.
    10.R.B. Prime, “Differential Scanning Calormetry of the Epoxy Cure Reaction”, Polym. Eng. Sci., Vol. 13, 365(1973)
    11.K. Dusek and M. Bkega, ”Curing of Epoxide Resins : Model Reaction of Curing with Amine”, J. Polym. Sci., Polym. Chem. Ed., Vol. 15, 2393(1977)
    12.S.Y. Pusatcioglu, A.L. Fricke and J.C. Hassler, “Heats of Reation and Kinetics of a Thermoset Polyester”, J. Appl. Polym. Sci., Vol. 24, 937(1979)
    13.A. Moroni, J. Mijovic, E. M. Pearce and C. C. Foun, ”Cure Kinetics of Epoxy Resins and Arometic Diamines”, J. Apply. Polym. Sci., Vol. 32, 3761(1986)
    14.A. Moroni, J. Mijovic, E.M. Pearce and C. C. Foun, ”Cure Kinetics of Epoxy Resins and Arometic Diamines”, J. Apply. Polym. Sci., Vol. 32, 3761(1986)
    15.M.E. Ryan and A. Dutta, “Kinetics of Epoxy Cure : A Rapid Technique for Kinetic Parameter Estimation”, Polymer, Vol. 20, 203(1979)
    16.J. Mijovic, ”Curing Kinetics of Neat Versus Reinforces Epoxies”, J. Appl. Polym Sci, Vol. 31, 1177(1986)
    17.M. A. Goloub and N. R. Lerner, “Kinetic Study of Polymerization /Curing of Filament-Wound Composite Epoxy Resin System with Aromatic Diamines”, J. Appl. Polym. Sci., Vol. 32, 5251(1986)
    18.K. Horie, “Calorimetric Investigation of Polymerization React-ions. III Curing Reaction of Epoxides with Amine”, J. Polym. Sci., A-1, Vol. 8, 1357(1970)
    19.F.G. Mussatti and C.W. Macosko, ”Rheology of Network Forming Systems”, Poly. Eng. Sci, Vol. 13, 236(1973)
    20.R.P. White, Jr., “ Time-Temperature Superpositioning of Viscosity-Time Profiles of Three High Temperature Epoxy Resins”, Poly. Eng. Sci., Vol. 14, 50(1974)
    21.M.B. Roller, “Characterization of the Time-Temperature-Viscosity Behavior of Curing B-Staged Epoxy Resin”, Polym. Eng. Sci., Vol. 15, 406(1975)
    22.A.V. Tungare, G..C. Martin andJ. T. Gotro, ”Chemorheological Characterization of Thermoset Cure”, Polym. Eng. Sci., Vol. 28, 1071(1988)
    23.J.M. Castro, C.W. Macosko and S. J. Perry, ”Viscosity Change during Urethane Polymerization with Phase Separation”, Polym. Comm., Vol. 25, 82(1984)
    24.A.B. Spoelstra, G..W. Peter, and H. E. Meijer, Poly. Eng. Sci, Vol. 36, No. 16(1996)
    25.R.Y. Chang, P.C. Tsai and W.H. Yang, “Modeling of Chemorheological Behavior of A Highly Filled Epoxy Modeling Compound for the Plastic Encapsulation of Microelectronics”, submit by Polym. Eng. Sci, (1998).
    26.楊文賢,“有限體積法在塑膠射出成型三維流動分析之研究”,博士論文,清華大學(2001)。
    27.R.Y. Chang and W.H. Yang, “Numerical Simulation of Mold Fill in Injection Molding Using A Three-Dimensional Finite Volume Approach”, Int. J. Numerical Method Fluids( received 22 November 2000).
    28.O. Ubbink and R.I. Issa , “A Method for Capturing Sharp Fluid Interfaces on Arbitary Meshes”, J. Comput. Phsys. 153, p.26-50, (1999).
    29.P.S. Laplace de, Traite de Mechanique Celeste, Bachelier, Paris, (1829).
    30.T.Young, Miscellaneous Works, G. Peacock, ed., J. Murray, London, Vol. I, p.418, (1885).
    31.J.U. Brackbill, D.B. Kothe, and C. Zemach, “A Continuum Method for Modeling Surface Tension”, J. Comput. Phsys. 100, p. 335-354, (1991).
    32.J.H. Ferziger, and M. Peric, “Computational Methods for Fluid Dynamics”, Springer, New York (1996).
    33.S.V. Patankar, “ Numerical Heat Transfer and Fluid Flow ”, Hemiphere, New York, (1980).
    34.C.M. Rhie and W.L. Chow, “A Numerical Study of the Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation”, AIAA J., 21, p.1525, (1983).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE