簡易檢索 / 詳目顯示

研究生: 陳昱銘
Chen, Yu-Ming
論文名稱: 具反饋機制的磁鉗系統架設與DNA單分子共價錨定開發
Construction of magnetic tweezers system with feedback control and development of covalently DNA single molecule anchoring
指導教授: 許志楧
Hsu, Ian C.
陳之碩
Chen, Chi-Shuo
口試委員: 楊自森
Yang, Tzu-Sen
崔豫笳
Cui, Yujia
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 68
中文關鍵詞: 磁鉗單分子操縱單分子錨定共價錨定
外文關鍵詞: Magnetic tweezers, Single molecule manipulation, Single molecule anchoring, Covalently anchoring
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來單分子操縱系統廣泛運用在生物領域相關研究,其可觀察單一分子的特性可看到以往無法觀察到的細微現象,其中磁鉗系統為具有奈米等級解析度且可以觀察多個生物分子的單分子操縱系統,以磁鐵及磁珠施予外力於欲觀察物體上,利用磁珠繞射圖譜影像進行比對以得到磁珠高度或角度,並由磁珠布朗運動得到磁力等資訊,在DNA、蛋白質酵素及細胞實驗中皆有廣泛應用。本實驗中以顯微鏡為基礎,將磁鉗系統架設於倒立式顯微鏡上,並先以pH錨定DNA進行系統校調及軟體測試,為了進行影像比對,先利用迭代法及邊界填充法定出磁珠中心,並將磁珠資訊轉換成徑向矢量,以影像比對方式得到磁珠高度,實驗中也撰寫軟體以布朗運動為基礎評估磁力大小。另外實驗中以馬來酰亞胺與硫醇於特定pH下的專一性設計一套具低非特異黏附及高可靠度的共價錨定方法,達到單一視野下多條DNA的目標,並以此錨定方式,測試距物鏡焦點0 ~ 15微米下系統影像比對的準確性,以評估系統解析度,結果顯示本系統於0 ~ 12 微米範圍中具有 ±79奈米的準確性。另調整磁鐵高度,在距離樣品室底部3.3、2.3、1.8、1.3、0.8、0.4及0.3 mm下測量磁力大小,並繪出磁力大小與磁鐵高度關係圖,顯示系統於磁鐵最低時可提供最高3.07±0.26皮牛頓的磁力。


    In recent years, single molecule manipulation systems have been widely used in research of biological systems. Magnetic tweezers can observe multiple biomolecules, including DNA and proteins, which could not be achieved by traditional systems. Magnetic beads were attached to the biomolecules and force was applied through magnets nearby. Location of the beads were measured through video microscopy. Orientation and height of magnetic beads was deduced through diffraction patterns formed by the beads. Magnetic force was calculated by equipartition theorem from Brownian motion.
    In our research, magnetic tweezers system was built on top of an inverted microscope. For software development and system calibration, DNA molecules were anchored to the bottom of the chamber through incubation in buffer with specific pH. The x and y position of the beads were determined through iteration and boundary fill and the height through image recognition. Images were converted to radius vectors and compared with the Look Up Table of a calibration standard. Furthermore, we built a calibration program to measure magnetic force from Brownian motion of the bead. We also developed an assay to covalently attachment mutiple DNA molecules on PEG coated coverslips in one field of view through specific reaction between maleimide and thiol at neutral pH. This anchoring method is highly reliable and shows low nonspecific binding. The spatial resolution of system was tested up to 15 microns from the bottom of the coverslip, and we found that the accuracy of our image recognition method is 79 nm from 0 to 12 micron. Magnetic force was calculated when the magnets are 3.3, 2.3, 1.8, 1.3, 0.8, 0.4 and 0.3 mm from the bottom of the chamber and the maximum force this system can exert on a 1 micron diameter bead is 3.07±0.26 pN when the magnets is on top of the chamber.

    摘要 i Abstract ii 目錄 iv 圖目錄 vii Chapter 1 文獻回顧 1 1.1 單分子操縱系統 (Single-Molecule Manipulation System) 1 1.2 磁鉗系統發展與應用 1 1.2.1 磁鉗系統應用 2 1.2.2 磁鉗系統光源 3 1.2.3 磁場與磁珠 5 1.2.4 樣品製備 6 1.3 嵌入劑 (Intercalator) 介紹 7 Chapter 2 實驗方法設計 10 2.1 試劑、儀器及實驗裝置 10 2.2 自製磁鉗系統設計 12 2.2.1 反饋系統 (Feedback system) 13 2.2.2 影像中磁珠水平位置計算 17 2.2.3 計算影像徑向矢量 (Radius vector) 19 2.2.4 影像比對計算垂直高度 20 2.2.5 以布朗運動測量磁力大小 21 2.3 DNA修飾 22 2.4 利用pH錨定DNA 23 2.4.1 MES滴定曲線 23 2.4.2 最佳化錨定pH 24 2.5 以共價鍵錨定DNA 25 2.5.1 樣品室表面修飾 27 2.5.2 DNA錨定及磁珠修飾 28 2.5.3 磁珠特性描述 28 2.5.4 流體樣品室製作 29 2.5.5 以流體樣品室錨定DNA 30 2.6 以SYBR Green 染劑估計DNA錨定數量 30 2.7 APMED嵌入劑合成 31 Chapter 3 結果與討論 33 3.1 反饋系統 33 3.1.1 動態範圍選擇 33 3.1.2 運作週期最佳化 34 3.2 pH 錨定測試 35 3.3 共價鍵錨定DNA 37 3.4 影像比對計算磁珠垂直高度 41 3.5 以布朗運動測量磁力大小 43 3.6 APMED嵌入劑合成 45 3.7 結果討論 47 Chapter 4 結論 49 參考文獻 51 附錄 59 附錄一、磁珠水平位置計算及影像比對 59 附錄二、磁力大小測量 62 附錄三、質量中心函數 (CM function) 63 附錄四、邊界移動法函數 (imbound_mov function) 63 附錄五、邊界填充法函數 (boundaryfill function) 65 附錄六、APMED 1H-NMR圖譜 66

    1. Cordova, J.C., et al., Combining single-molecule manipulation and single-molecule detection. Current Opinion in Structural Biology, 2014. 28(Supplement C): p. 142-148.
    2. Kriegel, F., N. Ermann, and J. Lipfert, Probing the mechanical properties, conformational changes, and interactions of nucleic acids with magnetic tweezers. Journal of Structural Biology, 2017. 197(1): p. 26-36.
    3. Helen, M., et al., Single-molecule techniques in biophysics: a review of the progress in methods and applications. Reports on Progress in Physics, 2018. 81(2): p. 024601.
    4. Lionnet, T., et al., Single-molecule studies using magnetic traps. Cold Spring Harb Protoc, 2012. 2012(1): p. 34-49.
    5. Huhle, A., et al., Camera-based three-dimensional real-time particle tracking at kHz rates and Angstrom accuracy. Nat Commun, 2015. 6: p. 5885.
    6. De Vlaminck, I., et al., Magnetic forces and DNA mechanics in multiplexed magnetic tweezers. PLoS One, 2012. 7(8): p. e41432.
    7. Vilfan, I.D., et al., Magnetic Tweezers for Single-Molecule Experiments. 2009: p. 371-395.
    8. Revyakin, A., R.H. Ebright, and T.R. Strick, Promoter unwinding and promoter clearance by RNA polymerase: Detection by single-molecule DNA nanomanipulation. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(14): p. 4776-4780.
    9. Vlijm, R., et al., Experimental phase diagram of negatively supercoiled DNA measured by magnetic tweezers and fluorescence. Nanoscale, 2015. 7(7): p. 3205-3216.
    10. Crut, A., et al., Fast dynamics of supercoiled DNA revealed by single-molecule experiments. Proceedings of the National Academy of Sciences, 2007. 104(29): p. 11957-11962.
    11. Cui, Y., Z.M. Petrushenko, and V.V. Rybenkov, MukB acts as a macromolecular clamp in DNA condensation. Nature Structural &Amp; Molecular Biology, 2008. 15: p. 411.
    12. Maier, B., D. Bensimon, and V. Croquette, Replication by a single DNA polymerase of a stretched single-stranded DNA. Proceedings of the National Academy of Sciences, 2000. 97(22): p. 12002-12007.
    13. Revyakin, A., et al., Abortive Initiation and Productive Initiation by RNA Polymerase Involve DNA Scrunching. Science, 2006. 314(5802): p. 1139-1143.
    14. Adhikari, A.S., J. Chai, and A.R. Dunn, Mechanical Load Induces a 100-Fold Increase in the Rate of Collagen Proteolysis by MMP-1. Journal of the American Chemical Society, 2011. 133(6): p. 1686-1689.
    15. Chen, H., et al., Improved high-force magnetic tweezers for stretching and refolding of proteins and short DNA. Biophysical journal, 2011. 100(2): p. 517-523.
    16. Weber, Gregory F., Maureen A. Bjerke, and Douglas W. DeSimone, A Mechanoresponsive Cadherin-Keratin Complex Directs Polarized Protrusive Behavior and Collective Cell Migration. Developmental Cell, 2012. 22(1): p. 104-115.
    17. Tabdili, H., et al., Cadherin-dependent mechanotransduction depends on ligand identity but not affinity. Journal of Cell Science, 2012. 125(18): p. 4362-4371.
    18. Ribeck, N. and O.A. Saleh, Multiplexed single-molecule measurements with magnetic tweezers. Rev Sci Instrum, 2008. 79(9): p. 094301.
    19. van Loenhout, Marijn T.J., et al., Non-Bias-Limited Tracking of Spherical Particles, Enabling Nanometer Resolution at Low Magnification. Biophysical Journal, 2012. 102(10): p. 2362-2371.
    20. Lee, M., S.H. Kim, and S.-C. Hong, Minute negative superhelicity is sufficient to induce the B-Z transition in the presence of low tension. Proceedings of the National Academy of Sciences, 2010. 107(11): p. 4985-4990.
    21. Wickersham, C.E., et al., Tracking a Molecular Motor with a Nanoscale Optical Encoder. Nano Letters, 2010. 10(3): p. 1022-1027.
    22. Long, X., et al., Mechanical unfolding of human telomere G-quadruplex DNA probed by integrated fluorescence and magnetic tweezers spectroscopy. Nucleic Acids Research, 2013. 41(4): p. 2746-2755.
    23. Dulin, D., et al., High Spatiotemporal-Resolution Magnetic Tweezers: Calibration and Applications for DNA Dynamics. Biophys J, 2015. 109(10): p. 2113-25.
    24. Redding, B., M.A. Choma, and H. Cao, Speckle-free laser imaging using random laser illumination. Nature Photonics, 2012. 6: p. 355.
    25. Lansdorp, B.M., et al., A high-speed magnetic tweezer beyond 10,000 frames per second. Review of Scientific Instruments, 2013. 84(4): p. 044301.
    26. Dulin, D., et al., Efficient Illumination for Microsecond Tracking Microscopy. PLOS ONE, 2014. 9(9): p. e107335.
    27. Strick, T.R., et al., The Elasticity of a Single Supercoiled DNA Molecule. Science, 1996. 271(5257): p. 1835-1837.
    28. Strick, T.R., et al., Behavior of Supercoiled DNA. Biophysical Journal, 1998. 74(4): p. 2016-2028.
    29. Smith, S., L. Finzi, and C. Bustamante, Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science, 1992. 258(5085): p. 1122-1126.
    30. Kriegel, F., et al., Probing the salt dependence of the torsional stiffness of DNA by multiplexed magnetic torque tweezers. Nucleic Acids Research, 2017. 45(10): p. 5920-5929.
    31. Haber, C. and D. Wirtz, Magnetic tweezers for DNA micromanipulation. Review of Scientific Instruments, 2000. 71(12): p. 4561.
    32. Jiang, C., et al., Electromagnetic tweezers with independent force and torque control. Review of Scientific Instruments, 2016. 87(8): p. 084304.
    33. Petrie, R. Permanent magnets in review. in Proceedings of Electrical/Electronics Insulation Conference. 1993.
    34. Gosse, C. and V. Croquette, Magnetic tweezers: Micromanipulation and force measurement at the molecular level. Biophysical Journal, 2002. 82(6): p. 3314-3329.
    35. Barbic, M., et al., Scanning probe electromagnetic tweezers. Applied Physics Letters, 2001. 79(12): p. 1897-1899.
    36. Liu, R., et al., Mechanical Characterization of Protein L in the Low-Force Regime by Electromagnetic Tweezers/Evanescent Nanometry. Biophysical Journal, 2009. 96(9): p. 3810-3821.
    37. Yu, Z., et al., A force calibration standard for magnetic tweezers. Review of Scientific Instruments, 2014. 85(12): p. 123114.
    38. De Vlaminck, I., et al., Highly parallel magnetic tweezers by targeted DNA tethering. Nano Lett, 2011. 11(12): p. 5489-93.
    39. Kollmannsberger, P. and B. Fabry, BaHigh-force magnetic tweezers with force feedback for biological applications. Review of Scientific Instruments, 2007. 78(11): p. 114301.
    40. Neuman, K.C. and A. Nagy, Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 2008. 5: p. 491.
    41. Johnson, K.C., et al., A multiplexed magnetic tweezer with precision particle tracking and bi-directional force control. Journal of biological engineering, 2017. 11: p. 47-47.
    42. Lipfert, J., et al., Freely orbiting magnetic tweezers to directly monitor changes in the twist of nucleic acids. Nature Communications, 2011. 2: p. 439.
    43. Madariaga-Marcos, J., et al., Force determination in lateral magnetic tweezers combined with TIRF microscopy. Nanoscale, 2018. 10(9): p. 4579-4590.
    44. Assi, F., et al., Massively parallel adhesion and reactivity measurements using simple and inexpensive magnetic tweezers. Journal of Applied Physics, 2002. 92(9): p. 5584-5586.
    45. Allemand, J.F., et al., pH-dependent specific binding and combing of DNA. Biophysical Journal, 1997. 73(4): p. 2064-2070.
    46. Eeftens, J.M., et al., Copper-free click chemistry for attachment of biomolecules in magnetic tweezers. BMC Biophysics, 2015. 8(1): p. 9.
    47. Janissen, R., et al., Invincible DNA tethers: covalent DNA anchoring for enhanced temporal and force stability in magnetic tweezers experiments. Nucleic Acids Res, 2014. 42(18): p. e137.
    48. Vlijm, R., et al., NAP1-Assisted Nucleosome Assembly on DNA Measured in Real Time by Single-Molecule Magnetic Tweezers. PLOS ONE, 2012. 7(9): p. e46306.
    49. Leuba, S.H., et al., Structure and dynamics of single DNA molecules manipulated by magnetic tweezers and or flow. Methods, 2009. 47(3): p. 214-22.
    50. Schlingman, D.J., et al., A new method for the covalent attachment of DNA to a surface for single-molecule studies. Colloids and Surfaces B: Biointerfaces, 2011. 83(1): p. 91-95.
    51. Strick, T., et al., Twisting and stretching single DNA molecules. Progress in Biophysics and Molecular Biology, 2000. 74(1): p. 115-140.
    52. Vlijm, R., J. V D Torre, and C. Dekker, Counterintuitive DNA Sequence Dependence in Supercoiling-Induced DNA Melting. Vol. 10. 2015. e0141576.
    53. Lee, C.-Y., et al., Structure and DNA Hybridization Properties of Mixed Nucleic Acid/Maleimide−Ethylene Glycol Monolayers. Analytical Chemistry, 2007. 79(12): p. 4390-4400.
    54. Koniev, O. and A. Wagner, Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chemical Society Reviews, 2015. 44(15): p. 5495-5551.
    55. Schelté, P., et al., Differential Reactivity of Maleimide and Bromoacetyl Functions with Thiols: Application to the Preparation of Liposomal Diepitope Constructs. Bioconjugate Chemistry, 2000. 11(1): p. 118-123.
    56. Neto, B. and A. Lapis, Recent Developments in the Chemistry of Deoxyribonucleic Acid (DNA) Intercalators: Principles, Design, Synthesis, Applications and Trends. Molecules, 2009. 14(5): p. 1725.
    57. Zeglis, B.M., V.C. Pierre, and J.K. Barton, Metallo-intercalators and metallo-insertors. Chemical Communications, 2007(44): p. 4565-4579.
    58. Joubert, A., et al., Sequence-Selective Targeting of Long Stretches of the DNA Minor Groove by a Novel Dimeric Bis-benzimidazole. Biochemistry, 2003. 42(20): p. 5984-5992.
    59. Colis, L., et al., DNA intercalator BMH-21 inhibits RNA polymerase I independent of DNA damage response. Oncotarget, 2014. 5(12): p. 4361-4369.
    60. Sunita, M., et al., Synthesis, characterization, DNA binding and cleavage studies of mixed-ligand copper (II) complexes. Arabian Journal of Chemistry, 2017. 10: p. S3367-S3374.
    61. Dwyer, F.P., et al., Biological activity of complex ions. Nature, 1952. 170(4318): p. 190-1.
    62. Marques, F., et al., Radiopharmaceuticals for targeted radiotherapy. Radiation Protection Dosimetry, 2005. 116(1-4): p. 601-604.
    63. Hafliger, P., et al., Induction of DNA-double-strand breaks by auger electrons from 99mTc complexes with DNA-binding ligands. Chembiochem, 2005. 6(2): p. 414-21.
    64. Whittle, K., Atomic considerations, in Nuclear Materials Science. 2016, IOP Publishing. p. 1-1-1-14.
    65. Haefliger, P., et al., Cell Uptake and Radiotoxicity Studies of an Nuclear Localization Signal Peptide−Intercalator Conjugate Labeled with [99mTc(CO)3]+. Bioconjugate Chemistry, 2005. 16(3): p. 582-587.
    66. Lipfert, J., X. Hao, and N.H. Dekker, Quantitative modeling and optimization of magnetic tweezers. Biophys J, 2009. 96(12): p. 5040-9.
    67. Cnossen, J.P., D. Dulin, and N.H. Dekker, An optimized software framework for real-time, high-throughput tracking of spherical beads. Rev Sci Instrum, 2014. 85(10): p. 103712.
    68. Kim, K. and O.A. Saleh, A high-resolution magnetic tweezer for single-molecule measurements. Nucleic acids research, 2009. 37(20): p. e136-e136.
    69. Zhang, Z., Magnetic Tweezers: Actuation, Measurement, and Control at Nanometer Scale. 2009: Ohio State University.
    70. Michalet, X., Dynamic Molecular Combing: Stretching the Whole Human Genome for High-Resolution Studies. Science, 1997. 277(5331): p. 1518-1523.
    71. Paluvai, N., S. Mohanty, and S. Nayak, Mechanical and thermal properties of sisal fiber reinforced acrylated epoxidized castor oil toughened diglycidyl ether of bisphenol A epoxy nanocomposites. Vol. 34. 2015.
    72. Satterthwait, A.C. and W.P. Jencks, Mechanism of the aminolysis of acetate esters. Journal of the American Chemical Society, 1974. 96(22): p. 7018-7031.
    73. Cline, G.W. and S.B. Hanna, Kinetics and mechanisms of the aminolysis of N-hydroxysuccinimide esters in aqueous buffers. The Journal of Organic Chemistry, 1988. 53(15): p. 3583-3586.
    74. Huan, Y., et al., Slide cover glass immobilized liquid crystal microdroplets for sensitive detection of an IgG antigen. RSC Advances, 2017. 7(60): p. 37675-37688.
    75. Kyaw, H., et al., Self-organization of gold nanoparticles on silanated surfaces. Vol. 6. 2015. 2345-2353.
    76. Grayson, P., et al., Real-time observations of single bacteriophage λ DNA ejections in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(37): p. 14652-14657.
    77. Kruithof, M., et al., Subpiconewton dynamic force spectroscopy using magnetic tweezers. Biophysical journal, 2008. 94(6): p. 2343-2348.
    78. Lipfert, J., et al., A method to track rotational motion for use in single-molecule biophysics. Review of Scientific Instruments, 2011. 82(10): p. 103707.

    QR CODE