簡易檢索 / 詳目顯示

研究生: 張力
Chang, Li
論文名稱: Wave interference phenomena in photonic crystals and disordered systems
光子晶體與雜質系統中干涉現象之探討
指導教授: 吳玉書
Wu, Yu-Shu
口試委員: 吳玉書
齊正中
陳柏中
胡崇德
楊賜麟
林志忠
朱仲夏
許世英
張文豪
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 80
中文關鍵詞: 光子晶體雜質系統干涉現象平均場理論弱局域效應
外文關鍵詞: photonic crystals, disordered systems, interference phenomena, mean field theory, weak localization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Wave interference is an interesting and important quantum phenomenon found in various physical systems. In photonic crystals, the systems are composed of periodic dielectric structures, where the propagation of vector electromagnetic wave is modulated by the periodic dielectric distribution, giving rise to the frequency spectrum called photonic band structure” with band gaps. Such systems offer a lot of potential applications such as waveguides, modulators, resonant cavities and etc. The 1st part of the thesis focuses on the development of an efficient method for the calculation of the photonic band structure, a mean field type of theory. This theory is applied to 2D and 3D photonic crystals. Wave interference also occurs in impure metals. In these systems, electron waves are scattering by randomly localized impurities. The interference here occurs in a self-intersecting loop of electron trajectory, between the time-reversal pair of clockwise and counterclockwise paths, leading to the interesting quantum phenomenon called weak localization. This phenomenon is characterized by a time scale called the dephasing time, which typically diverges at 0K. The recent experiments in weak localization, however, have reported a puzzling, contradicting observation, namely, the saturation of dephasing time at low temperatures. The other part of the thesis deals with the weak localization phenomenon in a system with non-uniform distribution of disorder, in connection of the dephasing issue.


    Content List of Publications Abstract Overview 1 Chapter 1 Introduction 3 1-A Introduction to photonic crystals 3 1-A-1 Structures and applications of photonic crystals 3 1-A-2 Plane-wave-expansion method and mean field theory 7 1-B Introduction to coherent backscattering 11 1-B-1Quantum interference and conductivity correction 11 1-B-2 Experimental and theoretical studies of dephasing saturation 14 I. Photonic Crystal Chapter 2 Mean field theory in 2D photonic crystals 19 2-1 Theory 19 2-2 Numerical results 28 2-3 Improved mean field theory 31 2-4 Conclusion 35 Chapter 3 Mean field theory in 3D photonic crystals 37 3-1 Improved mean field theory in three-dimensional photonic crystals 37 3-2 3D PCs infiltrated with LC 44 3-3 Conclusion 51 II. Weak Localization Chapter 4 Weak localization in non-uniform system 53 4-1 Virtual electron trap scattering (VETS) model 55 4-2 Effective dephasing time, 62 4-3 Conclusion 68 Appendix A 69 Appendix B 70 Appendix C 73 Appendix D 75 References 77

    Reference
    1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    2. E. Yablonovitch and T. J. Gmitter, Phys. Rev. Lett. 63, 1950 (1989).
    3. K.M. Ho, C.T. Chan, and C.M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).
    4. K. M. Ho, C. T. Chan, C. M. Souloulis, R. Biswas, and M. Sigalas, Solid State Commun. 89, 413 (1994)
    5. E. Özbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, Opt. Lett. 19, 1155-1157 (1994)
    6. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, Science, 305, 5681 (2004)
    7. S. G. Johnson and J. D. Joannopoulos, Appl. Phys. Lett. 77, 3409 (2000)
    8. M. H. Qi, E. Lidorikis, P. T. Rakich, et al., Nature 429, 538 (2004)
    9. T. T. Ngo, C. M. Liddell, M. Ghebrebrhan, and J. D. Joannopoulos, Appl. Phys. Lett. 88, 241920 (2006)
    10. I. D. Hosein, M. Ghebrebrhan, J. D. Joannopoulos, and C. M. Liddell, Langmuir 26, 2151 (2010)
    11. Z.Y. Li, J. Wang and B.Y. Gu, Phys. Rev. B 58, 3721 (1998).
    12. K. Busch and S. John, Phys. Rev. Lett. 83, 967 (1999).
    13. S. Kubo, Z.-Z. Gu, K. Takahashi, Y. Ohko, O. Sato, and A. Fujishima, J. Am. Chem. Soc. 124, 10950 (2002).
    14. T. Ikeda, J. Mater. Chem. 13, 2037 (2003).
    15. S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, Chem. Mater. 17, 2298 (2005).
    16. K. Yoshino et al. Appl. Phys. Lett. 75, 932 (1999); Y. –K. Ha et al., Appl. Phys. Lett. 79, 15 (2001);
    17. D. Kang et al., Phys. Rev. Lett. 86, 4052 (2001);
    18. T. T. Alkeskojld et al., Opt. Expr. 12, 5857 (2004);
    19. B. Maune et al., Opt. Expr. 13, 4699 (2005);
    20. H. Yoshida et al., Appl. Phys. Lett. 90, 071107 (2007);
    21. J. Tuominen et al., J. Eur. Opt. Soc. Rapid. Publ. 2, 07016 (2007);
    22. P. El-Kallassiet al., J. Opt. Soc. Am. B 24, 2165 (2007);
    23. A. E. Miroshnichenko et al., Appl. Phys. Lett. 92, 253306 (2008);
    24. U. Bog et al., Opt. Lett. 33, 2206 (2008);
    25. M. Ebnali-Heidari et al., Opt. Expr. 17, 1628 (2009);
    26. B. Rezaei and M. Kalafi, Opt. Commun. 282,1584 (2009);
    27. K. A. Piegdon et al., Opt. Expr. 18, 7946 (2010);
    28. E. A. Dorjgotov et al., Appl. Phys. Lett. 96, 163507 (2010).
    29. Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, Opt. Commun. 281, 4623 (2008);
    30. L. Jiusheng and D. Tieying in IEEE International Symposium: Microwave, Antenna, Propagation, EMC technologies, Wireless Communication, Hangzhou, China, 382 (2007).
    31. V. A. Tolmachev, S. A. Grudinkin, J. A. Zharova, V. A. Melnikov, E. V. Astrova, and T. S. Perova, Proc. Soc. Photo-Opt. Instr. Eng. (SPIE) 6996, Z9961 (2008).
    32. A. Mekis, S. Fan and J. D. Joannopoulos, Phys. Rev. B 58, 4809 (1998)
    33. S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. B 60, 5751 (1999)
    34. S. J. McNab, N. Moll, and Y. A. Vlasov, Opt. Expr. 11, 2927 (2003)
    35. Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, and K. Inoue, Opt. Expr. 12, 1090 (2004)
    36. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, Phys. Rev. B 72, 161318 (2005)
    37. H. Takano, B. S. Song, T. Asano, and S. Noda, Opt. Expr. 14, 3491 (2006).
    38. A. Chutinan and S. Noda, Phys. Rev. B 62, 44882 (2000)
    39. P. Lalanne, Apl. Opt. 35, 5369 (1996); P. Lalanne, Phys. Rev. B 58 9801 (1998).
    40. A.A. Krokhin, P. Halevi, and J. Arriaga, Phys. Rev. B 65, 115208 (2002).

    41. Chakravarty, S., and A. Schmid, Phys. Rep. 140, 193 (1986).
    42. Rammer, J., Quantum Transport Theory (Perseus Books Group) (1998).
    43. Altshuler, B. L. and A. G. Aronov, 1985, in Electron-Electron Interactions in Disordered Systems, edited by A. L. Efros and M. Pollak (North-Holland, Amsterdam).
    44. Altshuler, B. L., A. G. Aronov, D. E. Khmelnitskii, J. Phys. C 15, 7367 (1982)
    45. Bergmann, G., Phys. Rep. 107, 1 and references therein (1984).
    46. Mohanty, P., E. M. Q. Jariwala, and R. A. Webb, Phys. Rev. Lett. 78, 3366 (1997).
    47. Mohanty, P., and R. A. Webb, Phys. Rev. Lett. 88, 146601 (2002).
    48. Lin, J. J., and N. Giordano, Phys. Rev. B 35, 1071 (1987).
    49. Pooke, D. M., N. Paquin, M. Pepper, and A. Gundlach, 1989, J. Phys. Condens. Matter 1, 3289.
    50. Hiramoto, T., K. Hirakawa, Y. Iye, and T. Ikoma, 1989, Appl. Phys. Lett. 54, 2103.
    51. Mueller, R. M., R. Stasch, and G. Bergmann, Solid State Commun. 91, 255 (1994).
    52. Abrahams, E., P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
    53. Pierre, F., and N.O. Birge, Phys. Rev. Lett. 89, 206804 (2002).
    54. Huang, S. M., T. C. Lee, H. Akimoto, K. Kono, J.-J. Lin, Phys. Rev. Lett. 99, 046601 (2007).
    55. D. S. Golubev and A. D. Zaikin, Phys. Rev. Lett. 81, 1074 (1998);
    56. D. S. Golubev and A. D. Zaikin, J. Phys.: Conf. Ser. 129,012016 (2008);
    57. D. S. Golubev and A. D. Zaikin, New J. Phys. 10, 063027 (2008);
    58. A. G. Semenov and A. D. Zaikin, Phys. Rev. B 80, 155312 (2009).
    59. Marquardt, F., J. von Delft, R. A. Smith, and V. Ambegaokar, Phys. Rev. B 76, 195331 (2007).
    60. Zawadowski, A., Jan von Delft, and D. C. Ralph, Phys. Rev. Lett. 83, 2632 (1999).
    61. A. B. Gougam, F. Pierre, D. Pothier, H. Esteve and N. O. Birge, J. Low Temp. Phys. 118 447 (2000); F. Pierre and N. O. Birge, Phys. Rev. Lett. 89, 206804 (2002); F. Pierre, A.B. Gougam, A. Anthore, H. Pothier, D. Esteve, N.O. Birge, Phys. Rev. B 68, 085413 (2003).
    62. F. Schopfer, C. Bäuerle, W. Rabaud, and L. Saminadayar, Phys. Rev. Lett. 90, 056801 (2003).
    63. C. Bäuerle, F. Mallet, F. Schopfer, D. Mailly, G. Eska, and L. Saminadayar, Phys. Rev. Lett. 95, 266805 (2005);
    64. L. Saminadayar, P. Mohanty, R. A. Webb, P. Degiovanni, and C. Bäuerle, Physica E 40, 12 (2007);
    65. T. A. Costi, L. Bergqvist, A. Weichselbaum, J. von Delft, T. Micklitz, A. Rosch, P. Mavropoulos, P. H. Dederichs, F. Mallet, L. Saminadayar, and C. Bäuerle, Phys. Rev. Lett. 102, 056802 (2009).
    66. T. Micklitz, T. A. Costi, and A. Rosch, Phys. Rev. B 75, 054406 (2007).
    67. J. Wei, S. Pereverzev, and M. E. Gershenson, Phys. Rev. Lett. 96, 086801 (2006).
    68. A. V. Germanenko, G. M. Minkov, and O. E. Rut, Phys. Rev. B 64, 165404 (2001).
    69. L. Chang, C.C. Ho, H.S. Wei, and G.Y. Wu, J. Appl. Phys. 101, 053109 (2007).
    70. E. Graugnard, J. S. King, S. Jain, and C. J. Summers, Phys. Rev. B 72, 233105 (2005).
    71. V. A. Tolmachev, S. A. Grudinkin, J. A. Zharova, V. A. Melnikov, E. V. Astrova, and T. S. Perova, Proc. Soc. Photo-Opt. Instr. Eng. (SPIE) 6996, Z9961 (2008).
    72. Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, Opt. Commun. 281, 4623 (2008);
    73. L. Jiusheng and D. Tieying in IEEE International Symposium: Microwave, Antenna, Propagation, EMC technologies, Wireless Communication, Hangzhou, China, 382 (2007).
    74. H. S. Wei, L. Chang, and G. Y. Wu, J. Phys.: Condens. Matter 20, 425213 (2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE