簡易檢索 / 詳目顯示

研究生: 劉信謙
Liu, Hsin-Chien
論文名稱: 結合化學與酵素方法合成神經節苷脂GAA-7衍生物
Chemoenzymatic Synthesis of GAA-7 Derivatives
指導教授: 林俊成
Lin, Chun-Cheng
口試委員: 游景晴
Yu, Ching-Ching
梁健夫
Liang, Chien-Fu
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 146
中文關鍵詞: 神經節苷脂唾液酸酵素合成有機合成神經再生活性酵素表達
外文關鍵詞: Ganglioside, Sialic acid, Enzymatic synthesis, Organic Synthesis, Neuritogenic activity, Enzyme overexpression
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • GAA-7為Higuchi研究團隊於1993年從海星Linckia laevigata 體內萃取出的新型神經節苷脂,並利用大鼠腎上腺之嗜鉻細胞瘤作為媒介測試其神經再生活性,研究結果證實GAA-7比神經節苷脂GM1具有更高的神經再生活性,可望開發成為中樞神經系統藥物。在2015年,Kiso教授團隊完成了GAA-7的全合成,然而其過程繁瑣、耗時。
    本論文成功地利用酵素結合化學方法,合成出14種GAA-7衍生物。首先以化學方法在唾液酸的八號位置修飾甲氧基、五號位置修飾羥乙醯基,接著利用LgtA, CstI, Psp26ST此三種酵素完成五醣體的建構,並藉由2D NMR光譜分析鑑定出α-2,6唾液酸的鍵結位置在末端的GalNAc。然而,在以八號位置修飾為甲氧基的唾液酸進行α-2,3-唾液酸化反應時,卻得到較低的產率。儘管嘗試將受體改為較接近天然受體的GalNH2,卻仍然無法有效提升產率,並衍生出α-2,3及α-2,6的選擇性問題。
    未來,將測試各個衍生物的神經再生活性,並且研究其活性與結構的關係。


    It was found that echinodermatousgangliosides (EGs) show neuritogenic activity towards neuron-like rat adrenal pheocromocytoma (PC12) cells in the presence of the nerve growth factor (NGF). GAA-7 is one of echinodermatousgangliosides which show high neuritogenic activity. Till now, GAA-7 was only synthesized by chemical methods that needed several steps and time comsuming.
    We synthesized 14 GAA-7 derivatives with different terminal sialic acid derivatives by chemoenzymatic method. First, the modified sialic acid donor is synthesized by chemical method. Then, the synthesis of pentasaccharide can be achieved by 3 transferases (LgtA, Cst-I and Psp26ST). The α-2,6-linkage to GalNAc has been identified by 2D NMR spectrum (COSY, HSQC and HMBC). However, we failed in α-2,3-sialylation for Neu5Gc8OMe donor. Even though we change the acceptor to the GalNH2 which is more similar to the nature substrate of CstI, the reaction yield didn't increase much and the selectivity problem occurred because of unexpected α-2,6-sialylation.
    In the future, structure‐activity relationship study of GAA-7 can be achieved by the evaluation of the neuritogenic activity of the synthesized derivatives.

    摘要 I Abstract II 謝誌 III 目錄 V 圖目錄 VIII 流程圖目錄 XI 表目錄 XII 縮寫表 XIII 第一章 緒論 1 1-1 酵素對醣體合成的重要性 1 1-2 唾液酸 3 1-3 神經節苷脂 5 1-3-1 PC12細胞 7 1-3-2 棘皮動物之神經節苷脂 7 1-3-3 神經節苷脂GAA-7 9 1-4 神經節苷脂GAA-7之合成研究 11 1-5 醣激酶及醣基轉移酶 13 1-5-1 醣激酶 (NahK) 14 1-5-2 磷酸醣核苷轉移酶 (GlmU、CSS) 15 1-5-3醣基轉移酶 (LgtA) 16 1-5-4 唾液酸轉移酶 (CstI、PspST) 17 1-6 研究動機 21 第二章 結果與討論 23 2-1 GAA-7衍生物之逆合成分析 23 2-2 唾液酸的修飾 24 2-2-1合成八號位置為甲氧基之唾液酸 24 2-2-2合成Neu5Gc 30 2-3 以大腸桿菌誘導表現目標蛋白 31 2-3-1勝任細胞 31 2-3-2目標酵素純化與表現分析 32 2-3-3酵素表達分析 36 2-4 三醣體之合成 43 2-5 階段性一鍋化建構α-2,3-唾液酸 43 2-6 階段性一鍋化建構α-2,6-唾液酸 47 2-7 以NMR鑑定α-2,6-唾液酸鍵結位置 51 2-8 結論 59 第三章 實驗部分 60 4-1一般實驗方法 (試劑、溶劑與實驗儀器) 60 4-2 實驗步驟及光譜資料 61 參考文獻 96

    1. Shin, I.; Kim, K. S., Carbohydrate chemistry. Chem. Soc. Rev. 2013, 42, 4267-4269.
    2. Wen, L.; Edmunds, G.; Gibbons, C.; Zhang, J.; Gadi, M. R.; Zhu, H.; Fang, J.; Liu, X.; Kong, Y.; Wang, P. G., Toward Automated Enzymatic Synthesis of Oligosaccharides. Chem. Rev. 2018, 118, 8151-8187.
    3. Muthana, S.; Cao, H.; Chen, X., Recent Progress in Chemical and Chemoenzymatic Synthesis of Carbohydrates. Curr Opin Chem Biol 2009, 13, 573-581.
    4. Liang, D.-M.; Liu, J.-H.; Wu, H.; Wang, B.-B.; Zhu, H.-J.; Qiao, J.-J., Glycosyltransferases: Mechanisms and Applications in Natural Product Development. Chem. Soc. Rev. 2015, 44, 8350-8374.
    5. Blix, F. G.; Gottschalk, A.; Klenk, E., Proposed Nomenclature in the Field of Neuraminic and Sialic Acids. Nature 1957, 179, 1088-1088.
    6. Varki, A., Diversity in the sialic acids. Glycobiology 1992, 2, 25-40.
    7. Severi, E.; Hood, D. W.; Thomas, G. H., Sialic Acid Utilization by Bacterial Pathogens. Microbiology 2007, 153, 2817-2822.
    8. Varki, A., Sialic Acids in Human Health and Disease. Trends Mol Med 2008, 14, 351-360.
    9. Chen, X.; Varki, A., Advances in the Biology and Chemistry of Sialic Acids. ACS Chem. Biol. 2010, 5, 163-176.
    10. Hemeon, I.; Bennet, A. J., Sialic Acid and Structural Analogues: Stereoselective Syntheses. Synthesis 2007, 2007, 1899-1926.
    11. Liang, C.-F.; Kuan, T.-C.; Chang, T.-C.; Lin, C.-C., Stereoselective Synthesis of S-Linked α(2→8) andα(2→8)/ α(2→9) Hexasialic Acids. J. Am. Chem. Soc. 2012, 134, 16074-16079.
    12. Tamai, H.; Ando, H.; Tanaka, H.-N.; Hosoda-Yabe, R.; Yabe, T.; Ishida, H.; Kiso, M., The Total Synthesis of the Neurogenic Ganglioside LLG-3 Isolated from the Starfish Linckia laevigata. Angew. Chem. 2011, 50, 2330-2333.
    13. Rich, J. R.; Withers, S. G., A Chemoenzymatic Total Synthesis of the Neurogenic Starfish Ganglioside LLG-3 Using an Engineered and Evolved Synthase. Angew. Chem. 2012, 51, 8640-8643.
    14. Yu, R. K.; Tsai, Y.-T.; Ariga, T.; Yanagisawa, M., Structures, Biosynthesis, and Functions of Gangliosides-an Overview. J. Oleo Sci. 2011, 60, 537-544.
    15. Wang, B.; Brand-Miller, J., The Role and Potential of Sialic Acid in Human Nutrition. Eur. J. Clin. Nutr. 2003, 57, 1351-1369.
    16. Geisler, F. H.; Dorsey, F. C.; Coleman, W. P., Recovery of Motor Function after Spinal-Cord Injury — A Randomized, Placebo-Controlled Trial with GM-1 Ganglioside. N. Engl. J. Med. 1991, 324, 1829-1838.
    17. Svennerholm, L., Gangliosides ─ A New Therapeutic Agent Against Stroke and Alzheimer's Disease. Life Sci. 1994, 55, 2125-2134.
    18. Schneider, J. S.; Gollomp, S. M.; Sendek, S.; Colcher, A.; Cambi, F.; Du, W., A randomized, Controlled, Delayed Start Trial of GM1 Ganglioside in Treated Parkinson's Disease Patients. J. Neurol. Sci. 2013, 324, 140-148.
    19. Greene, L. A.; Tischler, A. S., Establishment of a Noradrenergic Clonal Line of Rat Adrenal Pheochromocytoma Cells which Respond to Nerve Growth Factor. Proc. Natl. Acad. Sci. U.S.A. 1976, 73, 2424-2428.
    20. Mutoh, T.; Tokuda, A.; Miyadai, T.; Hamaguchi, M.; Fujiki, N., Ganglioside GM1 Binds to the Trk Protein and Regulates Receptor Function. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 5087-5091.
    21. Higuchi, R.; Inagaki, M.; Yamada, K.; Miyamoto, T., Biologically Active Gangliosides from Echinoderms. J Nat Med 2007, 61, 367-370.
    22. Higuchi, R.; Inukai, K.; Jhou, J. X.; Honda, M.; Komori, T.; Tsuji, S.; Nagai, Y., Biologically Active Glycosides from Asteroidea, XXXI. Glycosphingolipids from the Starfish Asterias amurensis versicolor sladen, 2. Structure and Biological Activity of Ganglioside Molecular Species. Liebigs Ann. 1993, 1993, 359-366.
    23. Kawano, Y.; Higuchi, R.; Komori, T., Biologically Active Glycosides from Asteroidea, XIX. Glycosphingolipids from the Starfish Acanthaster Planci 4. Isolation and Structure of Five New Gangliosides. Liebigs Ann. 1990, 1990, 43-50.
    24. Tamai, H.; Ando, H.; Ishida, H.; Kiso, M., First Synthesis of a Pentasaccharide Moiety of Ganglioside GAA-7 Containing Unusually Modified Sialic Acids through the Use of N-Troc-sialic Acid Derivative as a Key Unit. Org. Lett. 2012, 14, 6342-6345.
    25. Tamai, H.; Imamura, A.; Ogawa, J.; Ando, H.; Ishida, H.; Kiso, M., First Total Synthesis of Ganglioside GAA-7 from Starfish Asterias amurensis versi­color. Eur. J. Org. Chem. 2015, 2015, 5199-5211.
    26. Lairson, L. L.; Henrissat, B.; Davies, G. J.; Withers, S. G., Glycosyltransferases: Structures, Functions, and Mechanisms. Annu. Rev. Biochem. 2008, 77, 521-555.
    27. Bülter, T.; Elling, L., Enzymatic Synthesis of Nucleotide Sugars. Glycoconj. J. 1999, 16, 147-159.
    28. Nishimoto, M.; Kitaoka, M., Identification of N-Acetylhexosamine 1-Kinase in the Complete Lacto-N-Biose I/Galacto-N-Biose Metabolic Pathway in Bifidobacterium longum. Appl. Environ. Microbiol. 2007, 73, 6444-6449.
    29. Cai, L.; Guan, W.; Kitaoka, M.; Shen, J.; Xia, C.; Chen, W.; Wang, P. G., A Chemoenzymatic Route to N-acetylglucosamine-1-phosphate Analogues: Substrate Specificity Investigations of N-acetylhexosamine 1-kinase. ChemComm 2009, 2944-2946.
    30. Cai, L.; Guan, W.; Wang, W.; Zhao, W.; Kitaoka, M.; Shen, J.; O’Neil, C.; Wang, P. G., Substrate Specificity of N-acetylhexosamine Kinase Towards N-acetylgalactosamine Derivatives. Bioorg. Med. Chem. Lett. 2009, 19, 5433-5435.
    31. Mengin-Lecreulx, D.; van Heijenoort, J., Identification of the GlmU Gene Encoding N-acetylglucosamine-1-phosphate Uridyltransferase in Escherichia coli. J. Bacteriol. 1993, 175, 6150-6157.
    32. Mengin-Lecreulx, D.; van Heijenoort, J., Copurification of Glucosamine-1-phosphate Acetyltransferase and N-acetylglucosamine-1-phosphate Uridyltransferase Activities of Escherichia coli: Characterization of the GlmU Gene Product as a Bifunctional Enzyme Catalyzing Two Subsequent Steps in the Pathway for UDP-N-acetylglucosamine Synthesis. J. Bacteriol. 1994, 176, 5788-5795.
    33. Guan, W.; Cai, L.; Fang, J.; Wu, B.; George Wang, P., Enzymatic Synthesis of UDP-GlcNAc/UDP-GalNAc Analogs Using N-acetylglucosamine 1-phosphate Uridyltransferase (GlmU). ChemComm 2009, 6976-6978.
    34. Yu, H.; Yu, H.; Karpel, R.; Chen, X., Chemoenzymatic Synthesis of CMP–Sialic Acid Derivatives by a One-pot Two-enzyme System: Comparison of Substrate Flexibility of Three Microbial CMP–Sialic Acid Synthetases. Bioorg. Med. Chem. 2004, 12, 6427-6435.
    35. Knorst, M.; Fessner, W.-D., CMP-Sialate Synthetase from Neisseria meningitidis − Overexpression and Application to the Synthesis of Oligosaccharides Containing Modified Sialic Acids. Adv. Synth. Catal. 2001, 343, 698-710.
    36. Morley, T. J.; Withers, S. G., Chemoenzymatic Synthesis and Enzymatic Analysis of 8-Modified Cytidine Monophosphate-Sialic Acid and Sialyl Lactose Derivatives. J. Am. Chem. Soc. 2010, 132, 9430-9437.
    37. Blixt, O.; van Die, I.; Norberg, T.; van den Eijnden, D. H., High-level Expression of the Neisseria Meningitidis LgtA Gene in Escherichia coli and Characterization of the Encoded N-acetylglucosaminyltransferase as a Useful Catalyst in the Synthesis of GlcNAcβ1→3Gal and GalNAcβ1→3Gal Linkages. Glycobiology 1999, 9, 1061-1071.
    38. Yu, C.-C.; Withers, S. G., Recent Developments in Enzymatic Synthesis of Modified Sialic Acid Derivatives. Adv. Synth. Catal. 2015, 357, 1633-1654.
    39. Gilbert, M.; Brisson, J.-R.; Karwaski, M.-F.; Michniewicz, J.; Cunningham, A.-M.; Wu, Y.; Young, N. M.; Wakarchuk, W. W., Biosynthesis of Ganglioside Mimics in Campylobacter jejuni OH4384: Identification of the Glycosyltransferase Genes, Enzymatic Synthesis of Model Compounds, and Characterization of Nanomole Amounts by 600-MHz 1H and 13C NMR analysis. J. Biol. Chem. 2000, 275, 3896-3906.
    40. Tsukamoto, H.; Takakura, Y.; Mine, T.; Yamamoto, T., Photobacterium sp. JT-ISH-224 Produces Two Sialyltransferases, α-/β-Galactoside α-2,3-Sialyltransferase and β-Galactoside α-2,6-Sialyltransferase. J. Biochem. 2007, 143, 187-197.
    41. Ding, L.; Yu, H.; Lau, K.; Li, Y.; Muthana, S.; Wang, J.; Chen, X., Efficient Chemoenzymatic Synthesis of Sialyl Tn-antigens and Derivatives. ChemComm 2011, 47, 8691-8693.
    42. Yu, H.; Chen, X., Aldolase-Catalyzed Synthesis of β-d-Galp-(1→9)-d-KDN:  A Novel Acceptor for Sialyltransferases. Org. Lett. 2006, 8, 2393-2396.
    43. 張婷崴. 合成八號位置修飾的唾液酸衍生物及神經節苷脂 LLG-5. 碩士論文, 國立清華大學, 2016.
    44. Roy, R.; Laferrière, C. A., Synthesis of Protein Conjugates and Analogues of N-acetylneuraminic Acid. Can. J. Chem. 1990, 68, 2045-2054.
    45. Shelke, S. V.; Gao, G.-P.; Mesch, S.; Gäthje, H.; Kelm, S.; Schwardt, O.; Ernst, B., Synthesis of Sialic Acid Derivatives as Ligands for the Myelin-associated Glycoprotein (MAG). Bioorg. Med. Chem. 2007, 15, 4951-4965.
    46. (a) Wang, J.; Cheng, B.; Li, J.; Zhang, Z.; Hong, W.; Chen, X.; Chen, P. R., Chemical Remodeling of Cell-Surface Sialic Acids through a Palladium-Triggered Bioorthogonal Elimination Reaction. Angew. Chem. 2015, 54, 5364-5368; (b) Augé, C.; David, S.; Malleron, A., An Inexpensive Route to 2-azido-2-deoxy-D-mannose and Its Conversion into an Azido Analog of N-acetylneuraminic Acid. Carbohydr. Res. 1989, 188, 201-205.
    47. 梁晉瑜. 酵素合成 α-2,6-唾液酸化人類母乳寡醣類似物. 碩士論文, 國立中正大學, 2018.
    48. (a) van Leeuwen, S. S.; Kuipers, B. J. H.; Dijkhuizen, L.; Kamerling, J. P., Development of a 1H NMR structural-reporter-group concept for the analysis of prebiotic galacto-oligosaccharides of the [β-D-Galp-(1→x)]n-D-Glcp type. Carbohydr. Res. 2014, 400, 54-58; (b) Bubb, W. A., NMR Spectroscopy in the Study of Carbohydrates: Characterizing the Structural Complexity. Concepts in Magnetic Resonance Part A: An Educational Journal 2003, 19, 1-19.
    49. Vliegenthart, J. F. G.; Dorland, L.; van Halbeek, H.; Haverkamp, J., NMR Spectroscopy of Sialic Acids. In Sialic Acids: Chemistry, Metabolism, and Function, Schauer, R., Ed. Springer Vienna: Vienna, 1982; pp 127-172.

    QR CODE