簡易檢索 / 詳目顯示

研究生: 王慎思
Shen-Sz Wang
論文名稱: 壓控振盪器之設計與基底雜訊對壓控振盪器影響之研究
Voltage Controlled Oscillator (VCO) Design and the Impact of Substrate Noise Coupling on VCO
指導教授: 徐碩鴻
Shuo-Hung Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 69
中文關鍵詞: 壓控振盪器相位雜訊基底雜訊差動調整可變電容電容陣列開關
外文關鍵詞: Voltage Controlled Oscillator, phase noise, substrate noise, differentially tuned varactors, capacitors array, switch
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    近年來,由於無線通訊系統快速地發展,通訊系統中的高頻積體電路的要求越來越嚴格。其中頻率合成器在通訊IC扮演極重要的腳色,而在頻率合成器中,壓控振盪器(VCO)是一個很重要的區塊。在此論文中,主要討論如何設計一個低相位雜訊且寬頻的VCO,而基底雜訊耦合對VCO的影響也被討論。
    本論文一開始介紹VCO的原理,VCO的設計考量並且介紹兩種相位雜訊的模型。接下來介紹兩種寬頻且低雜訊的VCO架構,此二種架構分別利用差動調整可變電容(differentially tuned varactors)和電容陣列與開關(capacirots arry and switches)來降低相位雜訊。此二VCO都是以TSMC 0.18um CMOS製程製作。輸出頻率從3GHz到5GHz,而在距離載波1MHz處的相位雜訊表現為-113dBc/Hz。
    近年來因為將數位與類比電路整合在一個晶片上的趨勢,基底雜訊也越來越被重視。本論文研究基底雜訊對VCO的影響,包含了雜訊經由數種不同的pad輸入對VCO輸出的影響之比較。另外,電感的guard ring接地或浮空對VCO的影響也在本論文中比較與討論。在本文中證明了接地的(grounded)電感guard ring提供了一個比浮空的(floated)電感guard ring高9.4dB的基底雜訊免疫度。


    Abstract

    In recent years, due to the rapid development of the wireless communication systems, the specifications of the RF integrated circuits inside these systems become very rigorous. The frequency synthesizer plays a very important role in various communication ICs, in which the voltage controlled oscillator (VCO) is the key component for high performance frequency synthesizer. In this study, the main focus is about design of low phase noise and wide band VCO. The substrate noise coupling effect in VCO is also discussed.
    This thesis first introduces the fundamentals of VCO such as the design considerations of VCO and the modeling of the phase noise in a VCO. Next describes two wide band and low phase noise VCO structures, which can reduce phase noise by the differentially tuned varactors and the capacitors array and switches, respectively. Both these two VCOs are fabricated by TSMC 0.18□m CMOS process. The output frequency is from 3GHz to 5GHz, and the phase noise at 1MHz offset is -113dBc/Hz.
    Due to the trend of integrating the digital circuits and analog circuits on a single chip in recent years, substrate noise is being taken more and more seriously. This thesis investigates the effect of substrate noise on VCO, including the comparison of the VCO output performances with the noise injected via several different pads. Furthermore, the effect of the inductor grounded or floated on the VCO is compared and discussed in this thesis also. It is demonstrated the grounded inductor guard ring provides a better isolation from substrate noise than the floated one by 9.4dB.

    Abstract i Acknowledgements iii Contents iv List of Figures vi List of Tables x Chapter 1 Introduction 1 1.1 Recent Trends in Wireless Communication Systems 1 1.2 Thesis Organization 2 Chapter 2 Basic Concepts of Voltage Controlled Oscillators 4 2.1 VCO Fundamentals 4 2.1.1 The Role That VCOs Play In A RF Receiver 4 2.1.2 General Considerations 6 2.1.3 LC Resonators 7 2.1.4 LC VCOs 9 2.2 Design Issues of LC VCOs 13 2.3 Phase Noise 15 2.3.1 Definition of Phase Noise 15 2.3.2 Effects of Phase Noise on Communication Systems 17 2.3.3 Phase Noise Analysis 18 Chapter 3 Design of Wide Band, Low Phase Noise LC VCOs 27 3.1 General Considerations 27 3.2 Motivation 28 3.3 A Wide Band, Low Phase Noise VCO with Differentially Tuned Varactors 30 3.3.1 Circuit Topology 30 3.3.2 Design Flow Chart 35 3.3.3 Simulation and Measured Results 36 3.4 A Wide Band, Low Phase Noise VCO with Capacitors Array and Switches 41 3.4.1 Circuit Topology 41 3.4.2 Simulation and Measured Results 43 3.5 Summary and Discussion 47 Chapter 4 Study of the Substrate Noise Effect on A Wide Band LC VCO 49 4.1 General Considerations 49 4.2 Substrate Noise Coupling Mechanism 50 4.3 Circuit Topology 51 4.3.1 VCO Circuit 51 4.3.2 Injection Pads 52 4.3.3 The Inductor Guard Ring 55 4.4 Simulation and Measured Results 56 4.5 Summary 65 Chapter 5 Conclusion and Future Work 66 References 67

    [1] RazaBehzad Razavi, “RF Microelectronics,” Prentice-Hall, Upper Saddle River, 1998.

    [2] Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill, 1st edition, 2004.

    [3] Pietro Andreani and Sven Mattisson, ”A 1.8-GHz CMOS VCO Tuned by An Accumulayion-Mode Varactor,” IEEE International Symposium and Systems, May 28-31, 2000, pp. 315-318.

    [4] Chiu-Huang Huang, “2.4GHz CMOS RF Receiver for IEEE 802.11b/g WLAN Application,” Department of Electrical Engineering, National Cheng Kung University, 2003.

    [5] Marc Tiebout, “Low-power Low-Phase-Noise Differentially Tuned Quadrature VCO Design in Standard CMOS,” IEEE J. Solid-State Circuits, vol. 36, No. 7, pp. 1018-1024, July 2001.

    [6] Levantino, S.; Samori, C.; Bonfanti, A.; Gierkink, S.L.J.; Lacaita, A.L.l Boccuzzi, V., ”Frequency Dependence on Bias Current in 5GHz CMOS VCOs: impact on tuning range and flicker noise upconversion,” IEEE Journal of Solid-State Circuits, vol.37, pp.1003-1011, Aug. 2002.

    [7] Wong, W.M.Y.; Ping Shing Hui; Zhiheng Chen; Keqiang Shen; Lau, J.; Chan, P.C.H.; Ping-Keung Ko, “A Wide Tuning Range Gated Varactor,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 773-779, May 2000.

    [8] T.H.Lee, A. Hajimiri, “Oscillator Phase Noise: A Tutorial,” IEEE Journal of Solid-State Circuits, vol.35, pp. 326-336, March 2000.

    [9] A. Hajimiri, T.H. Lee, “The Design of Low Noise Oscillators,” Kluwer Academic Publishers, 1st edition, 1999.

    [10] D. B. Lesson, “A Simple Model of Feedback Oscillator Noise Spectrum,” Proc. IEEE, vol. 54, pp. 329-330, February 1966.

    [11] T.H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits,” Cambridge, 2nd edition, 2004.

    [12] A. Hajimiri, T.H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE Journal of Solid-State Circuits, vol. 33, pp.179-194, February 1998.

    [13] C.M. Hung, B.A. Floyd, N. Park, and Kenneth K.O., “Fully integrated 5.35GHz CMOS VCOs and prescalers,” IEEE Trans. Microwave Theory Tech., vol. 49, No. 1, pp. 17-22, Janurary 2000.

    [14] N. Fong, J.-O. Plouchart, N. Zamdmer, D. Liu, L. Wanger, C. Plett, and G. Tarr, “A 1 V 3.8–5.7 GHz wide-band VCO with differentially tuned accumulation MOS varactors for common-mode noise rejection in CMOS SOI technology,” IEEE Trans. Microwave Theory Tech., vol. 51, Aug. 2003, pp. 1952–1959.

    [15] Joonho Gil, Student Member, IEEE, Seong-Sik Song, Student Member, IEEE, Hyunjin Lee, and Hyungcheol Shin, Senior Member, IEEE”A 119.2 dBc/Hz at 1 MHz, 1.5 mW, Fully Integrated, 2.5-GHz,” IEEE Microwave And Wireless Components Letters, VOL. 13, NO. 11, NOVEMBER 2003, pp. 457-459.

    [16] C. Samori, S. Levantino, and V. Boccuzzi, “A -94 dBc/Hz@100kHz, fully-integrated, 5 GHz, CMOS VCO with 18% tuning range for Bluetooth application,” Proc. IEEE Custom Integrated Circuits Conf.,2001,pp. 201–204.

    [17] J. Maget, M. Tiebout, and R. Kraus, “Influence of novel MOS varactors on performance of a fully-integrated UMTS VCO in standard 0.25-□m CMOS technology,” IEEE J. Solid-State Circuits, vol. 37, July 2002, pp. 953–958.

    [18] F. Svelto, S. Deantoni, and R. Castello, “A 1 mA, -120.5 dbc/Hz at 600 kHz from 1.9 GHz fully tuneable LC CMOS VCO,” in Proc. IEEE Custom Integrated Circuits Conf., 2000, pp. 577–580.

    [19] C. Samori, S. Levantino and V. Boccuzzi, “A -94dBc/Hz @100kHz, fully-integrated, 5GHz, CMOS VCO with 18% tuning mnge for Bluetooth application,” IEEE Custom Integrated Circuits Conj, pp. 201-204, 2001.

    [20] A. Yamagishi, T. Tsukahara, M. Harada, and J. Kodate, “A low-voltage 6-GHz Band CMOS monolithic LC-Tank VCO using a tuning-range switching technique,” IEEE MTI-S Digest , 2000, pp. 735-738.

    [21] Y. Yoghihaara, H. Sugawara, H. Ito, K. Okada, and K. Masu, “A wide tuning range CMOS VCO using variable inductor,” IEICE Trans. Fundamentals VOL.E88-A NO.2, February 2005, pp. 507-512.

    [22] J. Kucera, “Wideband BiCMOS VCO for GSMRJMTS Direct Conversion Receivers,” IEEE Int. Solid-Stale Circuits Conf, pp. 174-375,2001.

    [23] P. Vaananen, M. Metsanvirta, and N. Tchamov, “A 4.3-GHz VCO with 2-GHz Tuning Range and Low Phase Noise,’’ IEEE J. Sdid-State Circuits, vol. 36, pp. 142-146, January 2001.

    [24] S. Donnay, G. Gielen, editors, “Substrate noise coupling in mixed-signal IC’s,” Kluwer Academic Publishers, 2003.

    [25] M. Badaroglu et al., “Modeling and experimental verification of substrate noise generation in a 220-Kgates WLAN system-on-chip with multiple supplies,” IEEE J. Solid-State Circuits, vol.38, no.7, pp. 1250-1260, Jul. 2003.

    [26] M. Xu, D. K. Su, D. K. Shaeffer, T. H. Lee, and B. A. Wooley, “Measuring and modeling the effects of substrate noise on the LNA for a CMOS GPS receiver,” in Proc. IEEE Custom Integrated Circuits Conf., May 2000, pp. 353-356.

    [27] D. K. Su, M. J. Loinaz, S. Masui, and B. A. Wooley, “Experimental results and modeling techniques for substrate noise in mixed-signal integrated circuits,” IEEE J. Solid-State Circuits, vol.28, no.4, pp. 420-430, Apr. 1993.

    [28] R. Singh, “A review of substrate coupling issues and modeling strategies, ” in Proc. IEEE Custom Integrated Circuits Conf., May 1999, pp. 491-499.

    [29] T. Blalack, J. Lau, F. J. R. Clement, and B. A. Wooley, “Experimental results and modeling of noise coupling in a lightly doped substrate,” in Int. Electron Devices Meeting Tech. Dig., Dec. 1996, pp. 623-626.

    [30] Charlotte Soens, Geert Van der Plas, Piet Wambacq, Stéphane Donnay, and Maarten Kujik, “Performance Degradation of LC-Tank VCOs by Impact of Digital Switching Noise in Lightly Doped Substrates,” IEEE. J. Solid-State Circuits, vol. 40, no. 7, July 2005, pp. 1472-1480.

    [31] Nisha Checka, David D. Wentzloff, Anantha Chandrakasan, and Rafael Reif, “The effect of substrate noise on VCO performance,” IEEE Radio Frequency Integrated Circuits Symposium, June 2005, pp. 523-525.

    [32] B. Razavi , “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol.31, no.3, pp. 331-343, March 1996.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE