簡易檢索 / 詳目顯示

研究生: 魏佑霖
Yu-Lin Wei
論文名稱: 應用於K頻段之變壓器回授式低雜訊放大器
Transformer Feedback LNA for K-Band Applications
指導教授: 徐碩鴻
Shuo-Hung Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 68
中文關鍵詞: K頻段低雜訊放大器變壓器回授共電流技巧
外文關鍵詞: K-band, low noise amplifier, transformer feedback, current-reused technique
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • With the growth of the IT industry, the technologies of communication arouse more and more attention in these years. Recently, the demand for high data rate makes the desired operation frequency of RFICs moving toward higher bands. Among the applications, K-band (18-26.5 GHz) is of great interest, which can be used for short-range and high data-rate wireless communications or anti-collision radars for cars (24 GHz).
    In this work, four low noise amplifiers (LNA) were realized based on the transformer feedback configuration for K-Band applications, which include cascode, common source, and current-reused technique in different designs. All circuits used the on-chip transformer as the input matching network for better noise and power matching. All of them were implemented by a standard 0.18-□m CMOS technology. Among them, the cascode design achieved a noise figure of 5.4 dB under a power gain of 16.7 dB at 22.6 GHz. The first common source design achieved a noise figure of 4.5 dB under a power gain of 16.7 dB at 22 GHz. The second common source design used two kinds of transformer feedback topologies. It achieved a noise figure of 5.2 dB under the power gain of 16.7 dB at 21.7 GHz. The power consumptions of them are both about 15 mW. The LNA designed by current-reused technique presented a lowest NF of 4.3 dB under a power consumption of only 7.2 mW at the frequency of 22 GHz.


    隨著資訊科技的發展,近年來人們對於通訊技術的需求愈顯重要。也由於對高速率傳輸的需求增加,使得射頻晶片的操作頻率開始不斷的向更高的頻率移動,在眾多不同的應用之中,K頻段(18~26.5GHz)可以算是相當受到注目的其中之一,因為其能夠在短距離的無線通訊之中提供相當高的傳輸速率與頻寬。除此此外K頻段也可以應用於汽車的防撞雷達(24 GHz)等運用。
    本論文運用變壓器回授方式設計四個應用於K頻段之低雜訊放大器,包含疊接架構、共源極架構與共電流技巧等不同的架構,以上架構皆會使用在本論文裡不同放大器之設計中。同時所有電路皆使用實作於晶片上之變壓器來設計其輸入匹配網路已獲得良好的雜訊與功率匹配並且運用標準0.18-□m CMOS製程製作以便與後級的基頻電路作整合。在這些低雜訊放大器之中,使用疊接放大架構設計的低雜訊放大器在22.6 GHz具有5.4 dB的雜訊指數與16.7 dB的增益。第一種共源極放大架構設計則是在22 GHz具有4.5 dB的雜訊指數與16.7 dB的增益,而第二種共源極放大架構設計則是使用了兩種不同的變壓器回授方式來做設計,其在21.7 GHz具有5.2 dB的雜訊指數與16.7 dB的增益,以上兩個共源極設計之功率消耗皆約為15毫瓦。最後使用共電流技巧設計之低雜訊放大器則是在功率消耗只有7.2毫瓦的情況下,在操作頻率為22 GHz時具有最低的雜訊指數4.3 dB。

    Acknowledgement i Abstract ii List of Figures vi List of Tables x Chapter 1  Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 Chapter 2  Basic Concept of RF Receiver 3 2.1 Receiver Fundamental 3 2.1.1 S-parameter 3 2.1.2 Noise Figure 8 2.1.3 Sensitivity 10 2.1.4 Effects of Nonlinearity 11 2.1.5 Gain compression 12 2.1.6 Intermodulation 13 2.2 Required specification of LNA 16 2.2.1 Input Matching - 50 □ 16 2.2.2 Input-referred noise of NF 18 2.2.3 Stability consideration 19 2.3 Analysis of LNA 21 2.3.1 Noise in MOSFET 21 2.3.2 Circuit topologies 24 2.3.3 Design considerations and Trade-off 28 Chapter 3  The Transformer Feedback Technique 29 3.1  Basic Transformer Analysis 29 3.1.1 Introduction of monolithic transformer 29 3.1.2 Source-Gate transformer feedback 33 3.1.3 Drain-Source transformer feedback 35 3.2  K-Band Transformer Feedback LNA A 41 3.2.1 Circuit topology 41 3.2.2 Transformer and Inductors Layout 42 3.2.3 Measured Result 44 3.3  K-Band Transformer Feedback LNA B 47 3.3.1 Circuit topology 47 3.3.2 Transformer and Inductor Layout 48 3.3.3 Measured Results 49 3.4  K-Band Transformer Feedback LNA C 52 3.4.1 Circuit topology 52 3.4.2 Transformer and Inductor Layout 53 3.4.3 Measured Results 54 Chapter 4  Current-Reused Technique 58 4.1 Current-reused Characteristic 58 4.2 K-Band Transformer Feedback LNA D 60 4.2.1 Circuit topology 60 4.2.2 Transformers and Inductors Layout 62 4.2.3 Measured Results 62 Chapter 5  Conclusion 66 References 67

    [1]G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd ed., Upper Saddle River, New Jersey: Prentice Hall, 1996.
    [2]B. Razavi, RF Microelectronics, Upper Saddle River, New Jersey: Prentice Hall, 1998.
    [3]P. R. Gray and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th ed., New York: John Wiley, 2004.
    [4]K. Han, J. Gil, S.-S. Song, J. Han, H. Shin, C.-K. Kim, and K. Lee, “Complete High-Frequency Thermal Noise Modeling of Short-Channel MOSFETs and Design of 5.2-GHz Low Noise Amplifier,” IEEE J. Solid-State Circuits, vol. 4, no. 3, March. 2005.
    [5]D. K. Shaeffer and T. H. Lee, “A 1.5-V 1.5-GHz CMOS low-noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, pp. 745–759, May 1997.
    [6]T. H. Lee, The Design of CMOS Radio- Frequency Integrated Circuits. Cambridge, U.K.: Cambridge Univ. Press, 2003.
    [7]I. Cendoya, J. de No, B. Sedano, A. Garcia-Alonso, D. Valderas, I. Gutierrez, “A New Methodology for the On-Wafer Characterization of RF Integrated Transformers,” IEEE Trans. Microwave Theory Tech., vol. 55, pp. 1046-1053, May. 2007.
    [8]H. B. Liang, Y. S. Lin, C. C. Chen, P. F. Yeh, Y. R. Tzeng, T. Wang, S. S Lu, “An Analysis of Perfect-Magnetic-Coupling Ultra-Low-Loss Micmachined SMIS RF Transformers for RFIC Applications,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 4256-4267, Dec. 2006.
    [9]M. T. Reiha, J. R. Long, and J. J. Pekarik, “A 1.2 V reactive-feedback 3.1–10.6 GHz ultrawideband low-noise amplifier in 0.13 um CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp.1023-1033, May 2007.
    [10]J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368–1382, Sep. 2000.
    [11]D. Cassan, J.R. Long, “A 1V transformer-feedback low noise amplifier for 5-6GHz WLAN in 0.18um CMOS”, IEEE J. Solid-State Circuits, vol. 38, pp. 427-435, Mar. 2003.
    [12]A. Komijani, A. Natarajan, and A. Hajimiri, “A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, pp. 1901-1908, Sept. 2005.
    [13]K.W. Yu, Y.L. Lu, D.C. Chang, V. Liang, and M.F. Chang, ”K-Band low-noise amplifiers using 0.18um CMOS technology,” IEEE Microwave Wireless Compo. Lett. , vol.14, no.3, pp.106-108, Mar.2004.
    [14]S.C. Shin, M.D. Tsai, R.C. Liu, K.Y. Lin, and H. Wang, ”A 24-GHz 3.9-dB NF low-noise amplifier using 0.18um CMOS technology”, IEEE Microwave Wireless Compo. Lett. , vol.15, no.17, july 2005.
    [15]X. Guan and A. Hajimiri,” A 24-GHz CMOS front end” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 368-373, Feb. 2004.
    [16]C. Y. Cha and S. G. Lee, “A 5.2-GHz LNA in 0.35 μm CMOS Utilizing Inter-Stage Series Resonance and Optimizing the Substrate Resistance” IEEE J. Solid-State Circuits, Vol. 38, No.4, pp. 669-672, April 2003.
    [17]Y. Lin, S. Hsu, J. Jin, and C. Chan, “A 3.1–10.6 GHz ultra-wideband CMOS low noise amplifier with current-reused technique,” IEEE Microwave Wireless Compo. Lett. , vol.17, no.3, Mar. 2007.
    [18]A. Masud, H. Zirath, M. Ferndahl, and H.-O. Vickes, “90-nm CMOS MMIC amplifier,” in RFIC Symp. Dig., 2004, pp. 971–974.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE