| 研究生: |
楊宜山 Yang, Yih-Shan |
|---|---|
| 論文名稱: |
應用於三維反及閘式快閃記憶體之頁面緩衝感測電路設計 Page Buffer Circuit Design for 3D BE-SONOS TFT NAND FLASH Memory |
| 指導教授: |
張孟凡
Chang, Meng-Fan |
| 口試委員: |
邱瀝毅
Chiou, Lih-Yih 洪浩喬 Hong, Hao-Chiao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 三維快閃記憶體 |
| 外文關鍵詞: | 3D Flash Memory |
| 相關次數: | 點閱:139 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今的半導體記憶體中,反及閘型快閃記憶體在大容量資料存取的應用中扮演最重要的腳色。由於元件面積是平面半導體記憶體中最小的,反及閘型快閃記憶體可以達成很高的元件密度,降低製造成本。傳統大容量資料存取的媒介是硬碟,必須倚靠機械裝置旋轉磁性物質來存取資料,有著高耗能與低資料吞吐量的缺點,無法應用於可攜式電子產品。反及閘型快閃記憶體不需要任何的機械裝置,近年來廣泛被應用在智慧型手機以及平板電腦等可攜式電子產品,以及固態硬碟等高速的儲存媒介上。
現今最先進的反及閘型快閃記憶體已經微縮到二十奈米,平面式的反及閘型快閃記憶體微縮越來越困難,成本越來越高,製程微縮未來將不再是可行降低成本的辦法。既然無法縮小平面上的元件,要達成更高的記憶體容量的另一條出路就是在垂直方向堆疊更多的元件。在這樣的概念下,三維的反及閘型快閃記憶體應運而生,目前被視為下一世代大容量資料存取應用的解決方案。
反及閘型快閃記憶體的隨機存取速度很慢,為了能達成高度的資料吞吐量,反及閘型快閃記憶體採取大頁面同時感測的方式,每一或兩條位元線就會搭載一組感測電路,稱為頁面緩衝器。他負責感測出數十奈安培的微小電流,轉換成數位訊號。還必須支援寫入以及抹除驗證的機制。
我們提出一種應用於七十五奈米三維垂直閘極BE-SONOS型式反及閘型快閃記憶體的頁面緩衝器。可以補償三維架構中逐層不同的臨界電壓需求且採用反向感測機制阻絕來自源極線的雜訊,另外亦可支援多次感測的機制減少位元線耦合的雜訊。
NAND Flash memory plays an important role to data storage in the modern semiconductor memory. With the smallest cell area in the planar semiconductor memory, NAND Flash memory can achieve high cell density and low cost. Conventional large capacity data storage media is hard disk driver. It needs to use the dynamic mechanical structure to rotate the magnetic disc to read and write data. This characteristic makes it hard to be used in the portable device and have the disadvantage of high power and low throughput. Recently, the NAND Flash memory is widely used in the portable electronic products such as smartphone and tablet and high performance data storage media such as Solid State Disk (SSD).
The state of art of the modern NAND Flash technology has reaching 1x nanometer node. The technology scaling has become more and more difficult and expensive. In the near future, the technology shrinking will not be the effective method to reduce the cost. In order to achieve high storage capacity, the three dimensional NAND Flash technology is regarded as the solution of the next generation large data storage application in the recent year.
The random access speed of NAND Flash memory is quite slow. To achieve high data throughput, NAND Flash memory uses large page size and simultaneous sensing. Every one or two bit lines are connected to one sensing circuit called page buffer. It needs to sense the several tens nano ampere cell current and support the program and erase verify scheme.
We proposed a page buffer circuit for 75nm 3DVG BE-SONOS NAND Flash memory. It can support layer aware verify to compensate the different threshold voltage requirement for different layer in the 3DVG structure. It uses the reverse sensing scheme to eliminate the source line noise and supports the multi-sensing scheme to reduce the BL coupling noise.
[1] F. Masuoka, M. Momodomi, Y. Iwata and R. Shirota, "New ultra high density EPROM and flash EEPROM with NAND structure cell." International Electron Devices Meeting, pp. 552-555, 1987.
[2] M. Dauer et al., "A multilevel-cell 32 Mb flash memory, " in ISSCC Dig. Tech. Papers. Feb. 1995, pp. 132-133.
[3] T. Tanaka et al., “A 4-Mbit NAND-EEPROM with tight programmed Vt distribution,” Symposium on VLSI Circuits, 1990. Digest of Technical Papers, pp. 105–106, June 1990.
[4] K. D. Suh et. al., “A 3.3V 32Mb NAND Flash Memory with Incremental Step Pulse Programming Scheme”, ISSCC Tech. Dig., pp. 128–129, 1995.
[5] K. Imamiya et al., “A 35 ns-cycle time 3.3 V-Only 32 Mb NAND Flash EEPROM,” in ISSCC Dig. Tech. Papers, Feb. 1995, pp. 130–131.
[6] J. K. Kim, K. Sakui el al., "A 120 mm2 64 Mb NAND flash memory achieving 180 ns/byte effective program speed," in Symp. VLSI Circuits Dig. Tech. Papers, Paper 16.1, June 1996.
[7] K.-T. Park et al., “A 3.3 V 128 Mb multi-level NAND Flash memory for mass storage applications,” in IEEE ISSCC 1996 Dig. Tech. Papers, San Francisco, CA, Feb. 1996, pp. 32–33
[8] K. Imamiya et al., “A 130 mm 256 Mb NAND flash with hallow trench isolation technology,” in ISSCC Dig. Tech. Papers, 1999, pp. 112–113.
[9] H. Nobukata et al., “A 144 Mb 8-level NAND flash memory with optimized pulse width programming,” in VLSI Circuits Symp. Dig., Jun. 1999, pp. 39–40.
[10] K. Takeuchi and T. Tanaka, “A dual-page programming scheme for high-speed multi-Gb-scale NAND flash memories,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2000, pp. 156–157.
[11] T. Cho et al., “A 3.3-V 1-Gb multilevel NAND flash memory with non-uniform threshold voltage distribution,” in ISSCC Dig. Tech. Papers, Feb. 2001, pp. 28–29.
[12] J. Lee et al., “A 1.8V 1-Gb NAND flash memory with 0.12um STI process technology,” in ISSCC Dig. Tech. Papers, pp. 104–105, Feb. 2002.
[13] Hiroshi Nakamura et al. "A 125mm2 1Gb NAND Flash Memory with 10MB/s Program Throughput Solid-State Circuits Conference," ISSCC Dig. Tech. Papers, Feb. 2002 Page(s): 82–83, 411.
[14] J. Lee, et al, “A 1.8V, 2Gb NAND Flash Memory for Mass Storage Applications,” in ISSCC Dig. Tech. Papers, pp. 290-291, Feb. 2003.
[15] S. Lee et al., “A 3.3 V 4 Gb four-level NAND flash memory with 90nm CMOS technology,” in IEEE ISSCC Dig. Tech. Papers, pp. 52–53. 2004
[16] T. Hara, K. Fukuda, K. Kanazawa et al., “A 146mm2 8Gb NAND Flash Memory with 70nm CMOS Technology,” ISSCC Dig. Tech. Papers, pp. 44-45, Feb. 2005.
[17] T. Hara, et. al., “A 146mm2 8Gb NAND Flash Memory with 70nm COMS Technology”, ISSCC Tech. Dig., pp. 44–45, 2005.
[18] R. Micheloni, et al., “A 4Gb 2b/cell NAND Flash Memory with Embedded 5b BCH ECC for 36MB/s System Read Throughput,” ISSCC Dig. Tech. Papers, pp. 142-143, Feb. 2006
[19] Ken Takeuchi, et al., "A 56nm CMOS 99mm2 8Gb Multi-level NAND Flash Memory with 10MBs Program Throughput, “ ISSCC Dig. Tech. Papers, pp. 507-516, Feb. 2006
[20] N. Shibata, H. Maejima, K. Isobe et al., “A 70nm 16Gb 16-Level-Cell NAND Flash Memory,” Dig. Symp. VLSI Circuits, pp.190-191, Jun. 2007.
[21] N. Shibata, H. Maejima, K. Isobe et al., “A 70nm 16Gb 16-Level-Cell NAND Flash Memory,” Dig. Symp. VLSI Circuits, pp.190-191, Jun. 2007.
[22] Kanda, K. et al., “A 120mm2 16Gb 4-MLC NAND Flash Memory with 43nm CMOS Technology,” in IEEE ISSCC Dig. Tech. Papers, 2008, pp. 430–625.
[23] Yan Li, et al.,"A 16Gb 3b/ Cell NAND Flash Memory in 56nm with 8MB/s Write Rate" in IEEE ISSCC Dig. Tech. Papers, 2008, pp. 506–632.
[24] A. Cernea et al., “A 34 MB/s-program-throughput 16 Gb MLC NAND with all bitline architecture in 56 nm,” in IEEE ISSCC, 2008, 23–1.
[25] R. Zeng, et al., “A 172mm2 32Gb MLC NAND Flash Memory in 34nm CMOS,” ISSCC Dig. Tech. Papers, pp. 235-236, Feb. 2009
[26] Takuya Futatsuyama, et al., "A 113mm^2 32Gb 3b/cell NAND Flash Memory," ISSCC Dig. Tech. Papers, pp. 242-243, Feb. 2009
[27] Seung-Ho Chang et al. "A 48nm 32Gb 8-Level NAND Flash Memory with 5.5MB/s Program Throughput," ISSCC Dig. Tech. Papers, pp. 240-241,241a, Feb. 2009
[28] C. Trinh et al., "A 5.6MB/s 64Gb 4b/Cell NAND Flash Memory in 43nm CMOS" in ISSCC Dig Tech Papers. pp. 246-247.247a, Feb. 2009.
[29] Changhyuk Lee et al., “A 32Gb MLC NAND Flash Memory with Vth Endurance Enhancing Schemes in 32nm CMOS,” in ISSCC Dig Tech Papers. pp. 446-447 Feb. 2010.
[30] Koichi Fukuda et al., "A 151mm 2 64Gb MLC NAND Flash Memory in 24nm CMOS Technology" in ISSCC Dig Tech Papers. pp. 198-199 Feb. 2011.
[31] Sang-Don Lee et al., "A 32Gb MLC NAND Flash Memory with Vth Margin-Expanding Schemes in 26nm CMOS" in ISSCC Dig Tech Papers. pp. 198-199 Feb. 2011.
[32] Ik Joon Chang et al., "A 64Gb 533Mb/s DDR interface MLC NAND Flash in sub-20nm technology" in ISSCC Dig Tech Papers. pp. 430-432 Feb. 2012.
[33] Shibata, N. et al., "A 19nm 112.8mm2 64Gb multi-level flash memory with 400Mb/s/pin 1.8V Toggle Mode interface" in ISSCC Dig Tech Papers. pp. 422-424 Feb. 2012.
[34] Yan Li et al.,"128Gb 3b/cell NAND flash memory in 19nm technology with 18MB/s write rate and 400Mb/s toggle mode" in ISSCC Dig Tech Papers. pp. 436-437 Feb. 2012.
[35] http://www.samsung.com/global/business/semiconductor/product/flash-ssd/overview
[36] M. White, “On the go with SONOS”, IEEE Circuits and Designs, pp.22-31, 2000.
[37] Jaehoon Jang et al., "Vertical cell array using TCAT(Terabit Cell Array Transistor) technology for ultra high density NAND flash memory." VLSI Technology, Symposium on. pp. 192-193 June 2009.
[38] Jiyoung Kim Novel et al., "Vertical-Stacked-Array-Transistor (VSAT) for ultra-high-density and cost-effective NAND Flash memory devices and SSD (Solid State Drive)." VLSI Technology, Symposium on. pp. 186-187 June 2009.
[39] Ryota Katsumata et al., "Pipe-shaped BiCS flash memory with 16 stacked layers and multi-level-cell operation for ultra high density storage devices" VLSI Technology, Symposium on. pp. 136-137 June 2009.
[40] Hang-Ting Lue et al., "BE-SONOS: A Bandgap Engineered SONOS with Excellent Performance and Reliability" Tech. Digest of International Electron Devices Meeting (IEDM), pp. 547-550, 2005.
[41] Hang-Ting Lue et al., "A Highly Scalable 8-Layer 3D Vertical-Gate (VG) TFT NAND Flash Using Junction-Free Buried Channel BE-SONOS Device" Tech. Digest of International Electron Devices Meeting (IEDM), pp. 131-132, 2010.
[42] R. H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields,” Proceedings of the Royal Society of London, Vol. 119, No. 781, May 1928, pp. 173–181.
[43] T. Tanaka et al., “A quick intelligent program architecture for 3 V only NAND-EEPROMS,” in Symp. VLSI Circuits Dig. Tech. Papers, pp. 20-21, June 1992.
[44] G. J. Hemink et al., “Fast and accurate programming method for multilevel NAND flash EEPROM’s,” in Symp. VLSI Technol. Dig. Tech. Papers, June 1995, pp. 129–130.
[45] H. Nakamura et al., “A novel sense amplifier for flexible voltage operation NAND flash memories,” in Symp. VLSI Circuits Dig. Tech. Papers, June 1995, pp. 71–72.
[46] T. Tanaka, Y. Tanaka, H. Nakamura, K. Sakui, H. Oodaira, R. Shirota, K. Ohuchi, F. Masuoka, and H. Hara, “A quick intelligent page programming architecture and a shielded bitline sensing method for 3V-only NAND ?ash memory,” IEEE J. Solid-State Circuits, vol. 29,pp. 1366–1373, Nov. 1994.
[47] Rino Micheloni, Luca Crippa, Alessia Marelli "Inside NAND Flash Memories" ISBN 978-90-481-9430-8.
[48] K. Takeuchi et ai., "A double-level-vth select gate array architecture for multi-level NAND flash memories." in Symp. VLSI Ormits Dig. Tech. Papers, 1995, pp. 69-70.
[49] Raul-Adrian Cernea et al. U.S. Patent No. 7443757 – Non-volatile memory and method with reduced bitline crosstalk errors Assignee: SanDisk Corporation.
[50] Shou-Chang Tsao et al. U.S. Patent No.7447094 -Method for power-saving multi-pass sensing in non-volotile memory: SanDisk Corporation
[51] K. Takeuchi et al., “A negative Vth cell architecture for highly scalable, excellently noise immune and highly reliable NAND flash memories,” in Symp. VLSI Circuits Dig. Tech. Papers, June 1998, pp. 234–235.
[52] Young-Bog Park et al., "Degradation of thin tunnel gate oxide under constant Fowler-Nordheim current stress for a Flash EEPROM." Electron Devices, IEEE Transactions on, Jun 1998, pp. 1361-1368.
[53] Tommaso Vali et al. U.S. Patent No. US7936606 –Compensation of back pattern effect in a memory device.
[54] Hwang Huh, Gyeonggi-do (KR) U.S. Patent No. US7936606 –Page buffer circuit, nonvolatile memory device including the page buffer circuit, and method of operation the nonvolatile memory device.
[55] H.Tanaka, "Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory," Symposium on VLSI Technology Digest of Technical Papers (VLSIT), pp. 14-15, 2007.
全文公開日期 本全文未授權公開 (校內網路)