研究生: |
范姜泓杰 Fan-Jiang, Hung-Jie |
---|---|
論文名稱: |
球殼揉皺的力學與統計性質 Crumpling a Thin Sphere |
指導教授: |
洪在明
Hong, Tzay-Ming |
口試委員: |
蕭百沂
Hsiao, Pai-Yi 施宙聰 Shy, Jow-Tsong 吳國安 Wu, Kuo-An |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 球殼 、揉皺 |
外文關鍵詞: | crumple, sphere |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以往探究薄膜揉皺的力學性質(紙團大小和壓力的關係)、摺痕長度的分佈以及所儲存的彎曲/拉伸位能比例、摺痕數目、揉皺過程所發出的噪音統計等,都只針對平面型的薄膜,並未深究薄膜具有內在曲率是否會影響這些結果。本研究以球殼為對象,嚴格檢驗非歐幾里德、封閉薄膜的揉皺性質。
方便和平面揉皺比較,本研究採用分子動力學模擬(MD)工具,專注在過往研究過的性質:(1)摺痕的《彎曲與拉伸位能比值》與體積密度的關係。根據針對平面揉皺的風箏模型,如果摺痕彼此不相干,這個比值可以被嚴格證明為5,而球殼的實驗結果給出的比值為1;但兩者都會在摺痕、摺點耦合時(即多體的影響),比值明顯的降低。(2)外力與紙團密度的關係,平面揉皺的情況可以透過平面面積與摺痕數目估算而得,但是球殼特有的「隕石坑」摺痕極可能使上述方式不再有效。最明顯的是平面揉皺的power law無法在球殼揉皺中得到。(3)摺痕所儲存的總位能與其長度的關係,對照風箏模型所給出的從早期的1/3冪次,到晚期的正比理論預測,與球殼揉皺早期所得的1次方關係極為不同。
從所得的模擬結果,可以結論平面揉皺所使用的風箏模型無法套用在球殼上。我們認為主要理由是球殼所形成的隕石坑與平面所形成的線形摺痕的差異。
Crumpled membranes exhibit many interesting mechanical and statistical properties. However, researchers, including us, have long focused on flat sheets and did not second-guess whether an object that carries extrinsic curvature (and/or closed, i.e., without boundaries) may behave differently when crushed. We use Molecular Dynamics (MD) simulation to study the crumple process of a thin sphere in three dimensions.
The first property we measure is how the ratio of bending energy and stretching energy changes with volume density of the crumpled ball. In sheet case, it can be proved to 5 but the result of sphere is 1. The same part of sheet and sphere is that the ratio of bending energy and stretching energy will decay obviously in many-body interaction stage. Second is the relation between external force and volume density. The most different part is power law can not be seen for sphere case. Third is how the average total energy stored in each crease scales with the ridge length. The power of sheet is 1/3 and sphere is 1.
Based on MD result, Kite model is no longer suit for sphere. The reason is the difference of deformation of sheet is ridge, but the deformation of sphere is pit.
[1] A. J. Wood, Witten’s lectures on crumpling, Physica A 313, 83 (2002).
[2] S. F. Liou, C. C. Lo, M. H. Chou, P. Y. Hsiao, and T. M. Hong, Effect of ridge-ridge interactions in crumpled thin sheets, Phys. Rev. E 89, 022404 (2014).
[3] Y. C. Lin, Y. L. Wang, Y. Liu, and T. M. Hong, Crumpling under an Ambient Pressure, Phys. Rev. Lett. 101, 125504 (2008).
[4] K. Matan, R. B. Williams, T. A. Witten, and S. R. Nagel, Crumpling a Thin Sheet, Phys. Rev. Lett. 88, 076101(2002).
[5] W. B. Bai, Y. C. Lin, T. K. Hou, and T. M. Hong, Scaling relation for a compact crumpled thin sheet, Phys. Rev. E 82, 066112 (2010).
[6] N. J. Wagner, J. F. Brady, Shear thickening in colloidal dispersions, Phys. Today 62, 27 (2009).
[7] G. A. Vliegenthaqrt and G. Gompper, Forced crumpling of self-avoiding elastic sheets, Nature Mater. 5, 216 (2006).
[8] T. Tallinen, J. A. Åström, and J. Timonen, The effect of plasticity in crumpling of thin sheets, Nature Mater. 8, 25 (2009).