簡易檢索 / 詳目顯示

研究生: 許湘禹
論文名稱: 微波輔助水熱法合成中孔鎳鈷氧化物於非對稱超級電容器之應用
Microwave-assisted hydrothermal synthesis of mesoporous nickel-cobalt oxides for the application of asymmetric supercapacitors
指導教授: 胡啟章
口試委員: 胡啟章
溫惠玲
張國興
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 152
中文關鍵詞: 鎳鈷氧化物超級電容器微波輔助水熱中孔非對稱
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文中,吾人利用微波輔助水熱法來製備鎳鈷氧化物,其研究內容主要為:
    1.藉由前驅物溶液中添加錯合劑、改變氯化鎳/氯化鈷的比例,及微波輔助水熱持溫時間等變因調控,改變鎳鈷氧化物(NiCo2O4)奈米粒子的平均粒徑大小,並找出電容性質最佳之鎳鈷氧化物合成參數,作為後續實驗之固定條件。
    2.利用添加非離子型界面活性劑F127合成出具蟲洞結構的鎳鈷氧化物,成功增加材料的比表面積與孔隙度,並提升鎳鈷氧化物的比電容量達480 F g-1。
    3.導入工業界研究發展、提升品質時常使用的實驗設計法,找出影響鎳鈷氧化物比電容的主要因素為:界面活性劑濃度、微波反應溫度及熱處理溫度;並在最佳化實驗條件後,使鎳鈷氧化物比電容提升至588 F g-1,其後進一步研究循環伏安活化程序對鎳鈷氧化物材料晶相及孔洞微結構的影響。
    4.利用鎳鈷氧化物與石墨烯碳材組裝成非對稱型超級電容器,此非對稱超級電容器在充放電電流密度及電池操作電位窗(cell voltage)為4.15 A g-1及0.2~1.6 V的條件下,比能量及功率密度可達22.34 Wh/kg、1.10 kW/kg,且能量效率高達87%。
    材料分析上以X光繞射儀(X-ray Diffraction, XRD)分析鎳鈷氧化物的結晶結構以及結晶強度,掃描式電子顯微鏡(Scanning Electron Microscope, SEM)來觀察其表面型態,比表面積與孔徑分析儀 (Surface Area and Porosity Analyzer, BET) 來觀察其孔洞結構,循環伏安法(Cyclic Voltammetry, CV)、定電流計時電位測定法(Chronopotentiometry, CP)以檢測其電化學性質。


    摘要…………………………………………………………………II Abstract………………………………………………………………III 圖目錄…………………………………………………………………XI 表目錄………………………………………………………………XVI 第一章 緒論……………………………………………………………1 1-1 電化學原理…………………………………………………………1 1-1-1 電化學反應系統…………………………………………………1 1-1-2 影響電化學系統之因素…………………………………………2 1-2 電極材料……………………………………………………………3 1-3 金屬氧化物電極種類以及製備的方法……………………………4 1-4 複合氧化物……………………………………………………8 1-4-1 複合氧化物簡介………………………………………………8 1-4-2 鎳鈷氧化物……………………………………………………10 1-5 製備鎳鈷氧化物…………………………………………………11 1-5-1 微波輔助水熱法………………………………………………11 1-6 超級電容器……………………………………………………16 1-6-1 超級電容器的分類……………………………………………18 1-6-2 超級電容器之電容量測………………………………………19 1-6-3 影響超級電容器特性的因素…………………………………23 1-7 鎳、鈷氧化物於超級電容器之應用簡介………………………25 第二章 實驗方法、步驟與儀器簡介…………………………………30 2-1藥品與儀器………………………………………………………30 2-1-1藥品……………………………………………………………30 2-1-2儀器…………………………………………………………31 2-2 實驗規劃…………………………………………………………32 2-2-1 鎳鈷氧化物的製備……………………………………………33 2-3 石墨基材的製備與前處理…………………………………33 2-4 電極的製備………………………………………………………34 2-5 電化學分析實驗…………………………………………………34 2-5-1線性伏安掃描(L inear Sweep Voltammetry, LSV)……………35 2-5-2循環伏安掃描(Cyclic Voltammetry, CV)………………………36 2-5-3計時電位測定法(Chronopotentiometry, CP)[3]………………37 2-5-4阻抗頻譜分析(Electrochemical Impedance Spectroscopy EIS)………………………………………………………………………………………………………………………………………………………38 2-5-4-1阻抗頻譜分析原理………………………………………38 2-5-4-2電化學阻抗頻譜理論………………………………………40 2-6材料分析儀器與原理簡介………………………………………42 2-6-1 X光繞射分析(X-ray Diffraction Analysis, XRD)……………………42 2-6-2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM)……44 2-6-3 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) ……………………………………………………………………………………………………………………………………………………45 2-6-4 比表面積與孔徑分析儀 (Surface Area and Porosity Analyzer)……………………………………………………………47 2-6-5 熱重分析儀(Thermogravimetry Analyzer, TGA)…………………………51 第三章 錯合劑濃度、反應時間及鎳鈷前驅物比例對於微波合成鎳鈷氧化物材料的電化學行為影響……………………………………53 3-1研究動機與本章摘要……………………………………………53 3-2 實驗方法………………………………………………………53 3-3 醋酸根濃度的效應………………………………………………54 3-3-1 醋酸根濃度對鎳鈷氧化物結晶大小之影響…………………54 3-3-2 醋酸根濃度對比表面積與孔徑之影響………………………55 3-3-3醋酸根濃度對鎳鈷氧化物表面型態之影響…………………………………………58 3-3-4 醋酸根濃度對鎳鈷氧化物循環伏安圖譜之影響………………………………………………59 3-4微波反應持溫時間的影響……………………………………… 61 3-4-1 微波反應持溫時間對鎳鈷氧化物結晶大小之影響…………61 3-4-2 微波反應時間對比表面積與孔徑之影響……………………63 3-4-3 微波反應時間對鎳鈷氧化物循環伏安圖譜之影響…………65 3-5 改變氯化鎳/氯化鈷前驅物比例之效應….……………………67 3-5-1 氯化鎳/氯化鈷前驅物比例對鎳鈷氧化物結晶大小之影響………………………68 3-5-2 氯化鎳/氯化鈷前驅物比例對鎳鈷氧化物循環伏安圖譜之影響……………………………………………………………………………………………………………………………………………………69 3-6結果與討論……………………………………………………71 第四章 界面活性劑對合成中孔鎳鈷氧化物的影響……………………………………………72 4-1 研究動機與本章摘要……………………………………………72 4-2 實驗方法……………………………………………72 4-3界面活性劑對微波合成鎳鈷氧化物之影響……………………………………………73 4-3-1 不同種類及濃度之界面活性劑對鎳鈷氧化物結晶特性之影響…………………75 4-3-2 不同種類及濃度之界面活性劑對鎳鈷氧化物比表面積與孔徑大小分佈之影響……………………………………………76 4-3-3 不同種類及濃度之界面活性劑對鎳鈷氧化物循環伏安圖譜的影響…………79 4-3-4不同種類及濃度之界面活性劑對鎳鈷氧化物表面形態的影響……………………81 4-4熱處理對添加界面活性劑合成之鎳鈷氧化物的影響……………………………………83 4-4-1熱處理溫度對添加界面活性劑合成之鎳鈷氧化物結晶的影響…………………83 4-4-2熱處理溫度對添加界面活性劑合成之鎳鈷氧化物循環伏安圖譜的影響………86 4-4-3添加界面活性劑合成之鎳鈷氧化物之熱重損失分析…………………89 4-4-4熱處理溫度對添加不同界面活性劑合成之鎳鈷氧化物比表面積與孔徑大小分佈的影響………………………………………………………………………………………………………………………………………90 4-4-5熱處理溫度對添加不同界面活性劑所合成鎳鈷氧化物的孔洞形態影響………93 4-5結果與討論……………………………………………94 第五章 運用實驗設計法最佳化鎳鈷氧化物之比電容並探討循環伏安活化程序對鎳鈷氧化物的比電容及孔洞特性影響……………………………95 5-1 研究動機與本章摘要……………………………95 5-2實驗設計法簡述……………………………95 5-2-1部分因素實驗設計法……………………………96 5-3影響鎳鈷氧化物比電容值之部分因素設計……………………………98 5-3-1研究方法及因素選擇…………………………………………………………98 5-3-2實驗設計法之結果與分析…………………………………………………………100 5-3-3陡升實驗(steepest ascent)…………………………………………………………105 5-3-3-1陡升實驗之X光繞射圖譜…………………………………………………………106 5-3-3-2陡升實驗之循環伏安圖譜…………………………………………………………107 5-3-3-3陡升實驗之鎳鈷氧化物表面形貌…………………………………………………………108 5-3-3-4陡升實驗之比表面積與孔徑分析…………………………………………………………109 5-4循環伏安活化程序對鎳鈷氧化物的影響…………………………………………………………112 5-4-1活化類型介紹…………………………………………………………………………………………………………112 5-4-2 活化程序對鎳鈷氧化物之電化學特性影響……………………………………………114 5-4-3循環伏安活化程序對鎳鈷氧化物結晶性之影響……………………………117 5-4-4活化程序對鎳鈷氧化物表面之影響…………………………………………………………118 5-4-5活化程序對鎳鈷氧化物的孔洞形態影響……………………………119 5-5結晶指標及比表面積大小對鎳鈷氧化物比電容之影響……………………………120 5-6結果與討論……………………………………………………………………………………………………………………122 第六章 鎳鈷氧化物與石墨烯碳材之非對稱超級電容器組裝………………………124 6-1前言………………………124 6-2電極組裝概念………………………………………………………………………………………………124 6-2-1基本觀念………………………………………………………………………………………………124 6-2-2對稱組裝概念………………………………………………………………………………………………125 6-2-3非對稱組裝概念[69]………………………………………………………………………126 6-3鎳鈷氧化物與石墨烯之非對稱組裝………………………………………………130 6-4不同操作電位窗對非對稱超電容的影響……………………………………………………………132 6-4-1不同操作電位窗下非對稱超電容的充放電曲線………………………132 6-4-2不同操作電位窗對兩電極的充放電影響………………………134 6-4-3不同操作電位窗對鎳鈷氧化物-石墨烯之非對稱超電容的能量效率影響 ………………………………………………………………………………………………………………………………………………136 6-4-4鎳鈷氧化物-石墨烯之非對稱超電容的比能量、功率密度………………………137 6-4-5電化學阻抗頻譜分析…………………………………………………………………139 6-5現行二次電池與鎳鈷氧化物/石墨烯碳材之非對稱超電容的特性比較……………………………………………………………………141 6-6結果與討論……………………………………………………………………………142 第七章 未來展望……………………………………………………………………143 參考文獻………………………………………………………………………………144

    1. Bard AJ, Faulkner LR: Electrochemical methods : fundamentals and applications, 2nd edn. New York: Wiley; 2001.
    2. Crow DR: Principles and applications of electrochemistry, 2nd edn. London; New York: Chapman and Hall ; Wiley; 1979.
    3. 胡啟章編著: 電化學原理與方法: 五南圖書, 初版; 2002.
    4. 田福助編著: 電化學理論與應用: 新科技, 第八版; 2001.
    5. Pletcher D, Walsh F: Industrial electrochemistry, 2nd edn. London ; New York: Chapman and Hall; 1990.
    6. 張光揮: 循環伏安法置備含水釕銥氧化物於電化學電容器的應用. 國立中正大學化學工程研究所; 碩士論文; 2000.
    7. Couper AM, Pletcher D, Walsh FC: Electrode materials for electrosynthesis. Chemical Reviews 1990, 90(5):837-865.
    8. Galizzioli D, Tantardini F, Trasatti S: Ruthenium dioxide: A new electrode material. II. Non-stoichiometry and energetics of electrode reactions in acid solutions Journal of Applied Electrochemistry 1975, 5(3):203-214.
    9. Wendt H: Electrocatalysis in organic electrochemistry. Electrochimica Acta 1984, 29(11):1513-1525.
    10. Trasatti S: Physical electrochemistry of ceramic oxides. Electrochimica Acta 1991, 36(2):225-241.
    11. Marsan B, Fradette N, Beaudoin G: Physicochemical and electrochemical properties of CuCo2O4 electrodes prepared by thermal decomposition for oxygen evolution. Journal of The Electrochemical Society 1992, 139(7):1889-1896.
    12. Nanni L, Polizzi S, Benedetti A, De Battisti A: Morphology, microstructure, and electrocatalylic properties of RuO2-SnO2 thin films. Journal of The Electrochemical Society 1999, 146(1):220-225.
    13. Ito M, Murakami Y, Kaji H, Yahikozawa K, Takasu Y: Surface characterization of RuO2-SnO2 coated titanium electrodes. Journal of The Electrochemical Society 1996, 143(1):32-36.

    14. Fan Z, Chen J, Cui K, Sun F, Xu Y, Kuang Y: Preparation and capacitive properties of cobalt-nickel oxides/carbon nanotube composites. Electrochimica Acta 2007, 52(9):2959-2965.
    15. de Souza AR, Arashiro E, Golveia H, Lassali TAF: Pseudocapacitive behavior of Ti/RhOx+Co3O4 electrodes in acidic medium: application to supercapacitor development. Electrochimica Acta 2004, 49(12):2015-2023.
    16. Yoon YI, Ko JM: CoNi Oxide/Carbon-Nanofiber Composite Electrodes for Supercapacitors. International Journal of Electrochemical Science 2008, 3(12):1340-1347.
    17. Chi B, Lin H, Li J, Wang N, Yang J: Comparison of three preparation methods of NiCo2O4 electrodes. International Journal of Hydrogen Energy 2006, 31(9):1210-1214.
    18. Yuan C, Zhang X, Su L, Gao B, Shen L: Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. Journal of Materials Chemistry 2009, 19(32):5772-5777.
    19. 江鴻儒: 循環伏安及電鍍法製備釕電極在電化學電容器的應用.. 國立中正大學, 化學工程研究所; 2001.
    20. Hu CC, Tsou TW: Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition. Electrochimica Acta 2002, 47(21):3523-3532.
    21. Chen YS, Hu CC: Capacitive characteristics of binary manganese-nickel oxides prepared by anodic deposition. Electrochemical and Solid-State Letters 2003, 6(10):A210-A213.
    22. Ghaemi M, Biglari Z, Binder L: Effect of bath temperature on electrochemical properties of the anodically deposited manganese dioxide. Journal of Power Sources 2001, 102 (1-2):29-34.
    23. Hu CC, Cheng CY: Ideally pseudocapacitive behavior of amorphous hydrous cobalt-nickel oxide prepared by anodic deposition. Electrochemical and Solid-State Letters 2002, 5(3):A43-A46.
    24. Lin C, Ritter JA, Popov BN: Development of carbon-metal oxide supercapacitors from sol-gel derived carbon-ruthenium xerogels. Journal of The Electrochemical Society 1999, 146 (9):3155-3160.
    25. Simpraga RP, Conway BE: The real-area scaling factor in electrocatalysis and in charge storage by supercapacitors. Electrochimica Acta 1998, 43(19-20):3045-3058.
    26. Hinklin TR, Azurdia J, Kim M, Marchal JC, Kumar S, Laine RM: Finding spinel in all the wrong places. Advanced Materials 2008, 20(7):1373-1375.
    27. Yoon TJ, Kim JS, Kim BG, Yu KN, Cho MH, Lee JK: Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery. Angewandte Chemie- International Edition 2005, 44(7):1068-1071.
    28. Marco JF, Gancedo JR, Gracia M, Gautier JL, Rios EI, Palmer HM, Greaves C, Berry FJ: Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4. Journal of Materials Chemistry 2001, 11(12):3087-3093.
    29. Wojciechowska M, Zielinski M, Malczewska A, Przystajko W, Pietrowski M: Copper-cobalt oxide catalysts supported on MgF2 or Al2O3 - their structure and catalytic performance. Applied Catalysis a-General 2006, 298:225-231.
    30. Chellam U, Xu ZP, Zeng HC: Low-temperature synthesis of MgxCo1-xCo2O4 spinel catalysts for N2O decomposition. Chemistry of Materials 2000, 12(3):650-658.
    31. Cui B, Lin H, Li J-B, Li X, Yang J, Tao J: Core-ring structured NiCo2O4 nanoplatelets: Synthesis, characterization, and electrocatalytic applications. Advanced Functional Materials 2008, 18(9):1440-1447.
    32. Shchukin DG, Yaremchenko AA, Ferreira MGS, Kharton VV: Polymer gel templating synthesis of nanocrystalline oxide anodes. Chemistry of Materials 2005, 17(20):5124-5129.
    33. Alcántara R, Jaraba M, Lavela P, Tirado JL: NiCo2O4 Spinel:  First report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chemistry of Materials 2002, 14(7):2847-2848.
    34. Chadwick AV, Savin SLP, Fiddy S, Alcántara R, Fernández Lisbona D, Lavela P, Ortiz GF, Tirado JL: Formation and oxidation of nanosized metal particles by electrochemical reaction of Li and Na with NiCo2O4:  X-ray absorption spectroscopic study. The Journal of Physical Chemistry C 2007, 111(12):4636-4642.
    35. NuLi YN, Zhang P, Guo ZP, Liu HK, Yang J: NiCo2O4/C nanocomposite as a highly reversible anode material for lithium-ion batteries. Electrochemical and Solid-State Letters 2008, 11(5):A64-A67.
    36. Wei T-Y, Chen C-H, Chien H-C, Lu S-Y, Hu C-C: A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Advanced Materials 2010, 22(3):347-351.
    37. Hu G, Tang C, Li C, Li H, Wang Y, Gong H: The sol-gel-derived nickel-cobalt oxides with high supercapacitor performances. Journal of The Electrochemical Society 2011, 158 (6):A695-A699.
    38. Lenglet M, Guillamet R, Durr J, Gryffroy D, Vandenberghe RE: Electronic-Structure of NiCo2O4 By XANES, EXAFS And 61Ni Mössbauer Studies. Solid State Communications 1990, 74 (10):1035-1039.
    39. Hu CC, Chen WC, Chang KH: How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. Journal of The Electrochemical Society 2004, 151(2):A281-A290.
    40. Elbaydi M, Tiwari SK, Singh RN, Rehspringer JL, Chartier P, Koenig JF, Poillerat G: High specific surface-area nickel mixed-oxide powders LaNiO3 (perovskite) and NiCo2O4 (spinel) via sol-gel type routes for oxygen electrocatalysis in alkaline media. Journal of Solid State Chemistry 1995, 116(1):157-169.
    41. Gupta V, Gupta S, Miura N: Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor. Journal of Power Sources 2010, 195 (11):3757-3760.
    42. Castro EB, Real SG, Dick LFP: Electrochemical characterization of porous nickel-cobalt oxide electrodes. International Journal of Hydrogen Energy 2004, 29(3):255-261.
    43. Tiwari SK, Samuel S, Singh RN, Poillerat G, Koenig JF, Chartier P: Active thin NiCo2O4 film prepared on nickel by spray-pyrolysis for oxygen evolution. International Journal of Hydrogen Energy 1995, 20(1):9-15.

    44. Bo C, Li JB, Han YS, Dai JH: Effect of precipitant on preparation of Ni-Co spinel oxide by coprecipitation method. Materials Letters 2004, 58(9):1415-1418.
    45. Yang J, Li J, Lin H, Yang X, Tong X, Guo G: A novel preparation method for NiCo2O4 electrodes stacked with hexagonal nanosheets for water electrolysis. Journal of Applied Electrochemistry 2006, 36(8):945-950.
    46. H. M. Kingston SJH: Microwave-enhanced Chemistry: Fundamentals, Sample Preparation, and Applications. Washington, DC,: American Chemical Society; 1997.
    47. B.E. Conway: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications,. Kluwer-Plenum, 1999:New York
    48. Kotz R, Carlen M: Principles and applications of electrochemical capacitors. Electrochimica Acta 2000, 45(15-16):2483-2498.
    49. 張國興,林國閔,胡啟章: 應用於下世代超高電容器之二氧化釕電極的回顧與發展. 燃料電池專輯 2009.
    50. Nomoto S, Nakata H, Yoshioka K, Yoshida A, Yoneda H: Advanced capacitors and their application. Journal of Power Sources 2001, 97-8:807-811.
    51. Sarangapani S, Tilak BV, Chen CP: Materials for electrochemical capacitors - Theoretical and experimental constraints. Journal of The Electrochemical Society 1996, 143(11):3791-3799.
    52. Liu KC, Anderson MA: Porous nickel oxide/nickel films for electrochemical capacitors. Journal of The Electrochemical Society 1996, 143(1):124-130.
    53. Srinivasan V, Weidner JW: Studies on the capacitance of nickel oxide films: Effect of heating temperature and electrolyte concentration. Journal of The Electrochemical Society 2000, 147(3):880-885.
    54. Zheng JP, Jow TR: A new charge storage mechanism for electrochemical capacitors. Journal of The Electrochemical Society 1995, 142(1):L6-L8.

    55. Boodts JCF, Trasatti S: Hydrogen evolution on iridium oxide cathodes. Journal of Applied Electrochemistry 1989, 19(2):255-262.
    56. Otogawa R, Morimitsu M, Matsunaga M: Effects of microstructure of IrO2-based anodes on electrocatalytic properties. Electrochimica Acta 1998, 44(8-9):1509-1513.
    57. Marracino JM, Coeuret F, Langlois S: A first investigation of flow-through porous electrodes made of metallic felts or foams. Electrochimica Acta 1987, 32(9):1303-1309.
    58. Fonseca CP, Paula RM, Pallone EMJA, Neves S: A new approach to obtain lithium nickel cobalt oxide porous films. Electrochimica Acta 2006, 51(28):6419-6425.
    59. Svegl F, Orel B, Hutchins MG, Kalcher K: Structural and spectroelectrochemical investigations of sol-gel derived electrochromic spinel Co3O4 films. Journal of The Electrochemical Society 1996, 143(5):1532-1539.
    60. Lin C, Ritter JA, Popov BN: Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors. Journal of The Electrochemical Society 1998, 145(12):4097-4103.
    61. Serebrennikova I, Birss VI: Electrochemical Behavior of Sol-Gel Produced Ni and Ni-Co Oxide Films. Journal of The Electrochemical Society 1997, 144(2):566-571.
    62. Shinde VR, Mahadik SB, Gujar TP, Lokhande CD: Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Applied Surface Science 2006, 252(20):7487-7492.
    63. Srinivasan V, Weidner JW: Capacitance studies of cobalt oxide films formed via electrochemical precipitation. Journal of Power Sources 2002, 108(1-2):15-20.
    64. Cao L, Xu F, Liang YY, Li HL: Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Advanced Materials 2004, 16(20):1853-1857.
    65. Nunes F, Mendonca MH, Pereira MID, Costa FM: Preparation and characterisation of spinel type cobalt and rhodium oxide coatings on titanium. Materials Chemistry and Physics 2005, 92(2-3):526-533.

    66. Rozário A, Silva e Silva RK, Freitas MBJG: Recycling of nickel from NiOOH/Ni(OH)2 electrodes of spent Ni-Cd batteries. Journal of Power Sources 2006, 158(1):754-759.
    67. Singh D: Characteristics and Effects of gamma-NiOOH on cell performance and a method to quantify it in nickel electrodes. Journal of The Electrochemical Society 1998, 145(1):116-120.
    68. Bode H, Dehmelt K, Witte J: Zur kenntnis der nickel hydroxidelektrode--I. Über das nickel (II)-hydroxidhydrat. Electrochimica Acta 1966, 11(8):1079-1087.
    69. Zheng JP: The limitations of energy density of battery/double-layer capacitor asymmetric cells. Journal of The Electrochemical Society 2003, 150(4):A484-A492.
    70. Wei T-Y, Chen C-H, Chang K-H, Lu S-Y, Hu C-C: Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route. Chemistry of Materials 2009, 21(14):3228-3233.
    71. Zheng Y-z, Ding H-y, Zhang M-l: Preparation and electrochemical properties of nickel oxide as a supercapacitor electrode material. Materials Research Bulletin 2009, 44(2):403-407.
    72. M. R. Tarasevich BNE: Electrodes of Conductive Metallic Oxides Part A (Ed: S. Trasatti),. USA: Elsevier; 1982.
    73. 陳俊宏: 鈷系氧化物電極材料之合成,鑑定與應用. 碩士論文. 國立清華大學, 化工研究所; 2010.
    74. Brunauer S, Deming LS, Deming WE, Teller E: On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society 1940, 62(7):1723-1732.
    75. G. Ertl HKaJW: Handbook of heterogeneous catalysis, vol. 3; 1997.
    76. Deng J-J, Deng J-C, Liu Z-L, Deng H-R, Liu B: Capacitive characteristics of Ni-Co oxide nano-composite via coordination homogeneous co-precipitation method. Journal of Materials Science 2009, 44(11):2828-2835.

    77. Kuan-Xin H, Quan-Fu W, Xiao-Gang Z, Xin-Lei W: Electrodeposition of nickel and cobalt mixed oxide/carbon nanotube thin films and their charge storage properties. Journal of The Electrochemical Society 2006, 153 (8): A1568-A1574.
    78. 莊博堯: 電化學製備錳─鈷氧化物於電化學電容器的應用及成長機制研究. 碩士. 國立中正大學, 化學工程研究所; 2004.
    79. Serebrennikova I, Birss VI: Optimization of the preparation conditions of sol-gel derived Ni-Co oxide films. Journal of The Electrochemical Society 2000, 147(10):3614-3620.
    80. Cheng M-Y, Hwang B-J: Control of uniform nanostructured a-Ni(OH)2 with self-assembly sodium dodecyl sulfate templates. Journal of Colloid and Interface Science 2009, 337(1):265-271.
    81. Zhou JH, Ji YJ, He JP, Zhang CX, Zhao GW: Enhanced mesoporosity and capacitance property of spherical carbon aerogel prepared by associating Mg(OH)2 with non-ionic surfactant. Microporous and Mesoporous Materials 2008, 114(1-3): 424-430.
    82. Lee Y-F, Chang K-H, Hu C-C, Chu Y-H: Designing tunable microstructures of Mn3O4 nanoparticles by using surfactant-assisted dispersion. Journal of Power Sources 2012, 206(0):469-475.
    83. 李盈鋒: 以高分子輔助合成鈦,錳和矽氧化物奈米孔洞材料與其應用. 博士. 國立清華大學, 化學工程學系; 2011.
    84. Rahman A, Brown CW: Effect of pH on the critical micelle concentration of sodium dodecyl sulphate. Journal of Applied Polymer Science 1983, 28(4):1331-1334.
    85. Huang MH, Dunn BS, Zink JI: In situ luminescence probing of the chemical and structural changes during formation of dip-coated lamellar phase sodium dodecyl sulfate sol−gel thin films. Journal of the American Chemical Society 2000, 122(15):3739-3745.
    86. George E.P. Box WGH, J. Stuart Hunter: Statistics for Experiments. New York: Wiely; 1978.
    87. 溫添進“直交表應用於化工實驗分析" 化工37卷2期; 1990.
    88. 溫添進“應答曲面法應用於化工研究"化工 38 卷 5 期; 1991.
    89. Choi D, Blomgren GE, Kumta PN: Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Advanced Materials 2006, 18(9):1178-1182.
    90. 吳永泰: Synthesis and characterization of manganese oxides as well as their applications. 博士論文. 國立中正大學, 化學工程所; 2007.
    91. Deng J-J, Deng J-C, Liu Z-L, Deng H-R, Liu B: Influence of addition of cobalt oxide on microstructure and electrochemical capacitive performance of nickel oxide. Journal of Solid State Electrochemistry 2009, 13(9):1387-1394.
    92. Lang J-W, Kong L-B, Liu M, Luo Y-C, Kang L: Co0.56Ni0.44 Oxide Nanoflake Materials and Activated Carbon for Asymmetric Supercapacitor. Journal of The Electrochemical Society 2010, 157(12):A1341-A1346.
    93. Katsuhiko Naoi PS: New materials and new configurations for advanced electrochemical capacitors. ECS interface 2008, spring, 34.
    94. Che Q, Zhang F, Zhang XG, Lu XJ, Ding B, Zhu JJ: Preparation of ordered mesoporous carbon/NiCo2O4 electrode and its electrochemical capacitive behavior. Acta Physico-Chimica Sinica 2012, 28(4):837-842.
    95. Bak S-M, Kim K-H, Lee C-W, Kim K-B: Mesoporous nickel/carbon nanotube hybrid material prepared by electroless deposition. Journal of Materials Chemistry 2011, 21(6):1984-1990.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE