簡易檢索 / 詳目顯示

研究生: 王昭凱
Wang, Chao-Kai
論文名稱: 模擬利用似噪音脈衝產生兆赫波之研究
Simulation of Terahertz pulse generation by noise like pulse
指導教授: 潘犀靈
Pan, Ci-Ling
口試委員: 吳小華
Wu, Hsiao-Hua
施宙聰
Shy, Jow-Tsong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 35
中文關鍵詞: 似噪音脈衝光導天線兆赫波
外文關鍵詞: noise-like pulse, photoconductive antenna, terahertz
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究主題是探討如何由似噪音脈衝及光導天線產生之兆赫波。我們研究了強度自相干量測中不同底座寬度的似噪音脈衝對於其產生兆赫波之電場與頻譜的影響。似噪音脈衝雖具週期性,每一波包之內部結構均不同,每一發脈衝產生之兆赫波電場均不相同。我們提議用兩種方式來分析似噪音脈衝產生之兆赫波的波形及頻譜。我們也探討使用不同寬度的鎖模高斯脈衝來偵測似噪音脈衝產生之兆赫波電場以及頻譜。
    我們更進一步討論兩種頻譜分析方式如何對應到實際情況,不同量測(資料處理)方式將影響到預期產生的兆赫波頻譜的高頻部分。
    模擬結果顯示,比較由鎖模高斯脈衝與對應底座寬度之似噪音脈衝產生之兆赫波頻譜,由似噪音脈衝產生之兆赫波頻譜除了主訊號(半高寬約為0.6THz)外還有高頻訊號延伸至40THz以上。鎖模脈衝則只會激發主訊號。對同一組似噪音脈衝產生之兆赫波進行不同的分析在高頻部分會有不同的結果,將同組兆赫波訊號在時域上做平均,傅立葉轉換後之頻譜高頻部分比主訊號小三個數量級,將同組兆赫波訊號個別進行傅立葉轉換後,在頻域上平均,高頻部分比主訊號小一個數量級。


    In this work, we study how to generate terahertz field via noise-like pulses and photoconductive antenna. We study with noise-like pulses from intensity type autocorrelation traces and their effects on the THz field and spectrum generated. Although the noise-like pulses are periodic, the inner structure inside each the wave packet in the pulse train is different. Each shot of noise-like pulses generated distinct terahertz waveforms. We further suggest using two kinds of methods to analyze the generated THz spectrum. We also use different widths of mode-locked Gaussian pulses to probe the generated THz field and analyze its spectrum.
    We further discuss how the two kinds of analysis connect to the actual events. The method of data processing will influence the result of the high-frequency components in the spectrum.
    We compare THz signals generated by mode-locked Gaussian pulses and noise-like pulses. There exist high frequency component in the noise-like pulses generated terahertz spectrum which extend to 40THz The mode-locked Gaussian pulses only excite main signal with 0.6THz Full width at half maximum . To analyze on the same set of noise-like pulses generated terahertz spectrum in different way, the result on the high frequency component will be different. The terahertz field averaged in time domain than Fourier transform into frequency domain. High frequency component is less three order magnitude than main component. By Fourier transform into frequency domain each of the terahertz field than averaged the spectrum in frequency domain. High frequency component is less one order magnitude than main component.

    摘要 I Abstract II 致謝 IV Table of Contents V List of Figures VII List of Abbreviations 1 Chapter 1 Introduction 2 1.1 Terahertz Technology 2 1.2 Motivation and Organization 3 Chapter 2 Theoretical Background 4 2.1 Ytterbium -Doped Fiber Laser System 4 2.2 Noise-like pulses (NLP) 5 2.2.1 Overview 5 2.2.2 Characteristics 6 2.2.3 Physical mechanisms for generating NLP 8 2.3 Terahertz Generation and Detection 9 2.3.1 Photoconductive Antenna 9 2.3.2 Terahertz Time-Domain Spectroscopy (TDS) 10 Chapter 3 Simulation Result 12 3.1 NLP generated THz waveform averaged by different quantity 12 3.2 NLP generated THz waveform & spectrum by different pedestal width 15 3.3 Two approach to analyze the THz spectrum 23 3.3.1 Average THz field then Fourier transform 23 3.3.2 Fourier transform each THz field then average the spectrum 27 3.4 Detection 30 Chapter 4 Discussion 32 4.1 Compare NLP generated THz spectrum with MLP generated THz spectrum 32 4.2 Two methods of analysis with spectrum correspond to actual event 32 Chapter 5 Conclusion and Future Work 33 5.1 Conclusion 33 5.2 Future Work 33 Reference 34

    [1] M. Tonouchi, "Cutting-edge terahertz technology," Nature photonics, vol. 1, no. 2, pp. 97-105, 2007.
    [2] Y.-S. Lee, Principles of terahertz science and technology. Springer Science & Business Media, 2009.
    [3] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science, vol. 264, no. 5158, pp. 553-556, 1994.
    [4] H. Hafez et al., "Intense terahertz radiation and their applications," Journal of Optics, vol. 18, no. 9, p. 093004, 2016.
    [5] V. Apostolopoulos and M. Barnes, "THz emitters based on the photo-Dember effect," Journal of Physics D: Applied Physics, vol. 47, no. 37, p. 374002, 2014.
    [6] A. Roggenbuck et al., "Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples," New Journal of Physics, vol. 12, no. 4, p. 043017, 2010.
    [7] T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, "Unitraveling-carrier photodiodes for terahertz applications," IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 6, pp. 79-88, 2014.
    [8] J.-W. Shi et al., "20-Gb/s on-off-keying wireless data transmission by using bias modulation of NBUTC-PD based w-band photonic transmitter-mixer," in Microwave Photonics (MWP), 2010 IEEE Topical Meeting on, 2010, pp. 46-49: IEEE.
    [9] K. Lu and N. K. Dutta, "Spectroscopic properties of Yb-doped silica glass," Journal of applied physics, vol. 91, no. 2, pp. 576-581, 2002.
    [10] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE Journal of quantum electronics, vol. 33, no. 7, pp. 1049-1056, 1997.
    [11] O. Pottiez, R. Grajales-Coutiño, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernández-García, "Adjustable noiselike pulses from a figure-eight fiber laser," Applied Optics, vol. 50, no. 25, pp. E24-E31, 2011.
    [12] S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, "Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers," Optics Express, vol. 17, no. 23, pp. 20707-20713, 2009.
    [13] Y. An, D. Shen, W. Zhao, and J. Long, "Characteristics of pulse evolution in mode-locked thulium-doped fiber laser," Optics Communications, vol. 285, no. 7, pp. 1949-1953, 2012.
    [14] S. Kobtsev and S. Smirnov, "Fiber lasers mode-locked due to nonlinear polarization evolution: golden mean of cavity length," Laser Physics, vol. 21, no. 2, pp. 272-276, 2011.
    [15] L. Zhao, D. Tang, J. Wu, X. Fu, and S. Wen, "Noise-like pulse in a gain-guided soliton fiber laser," Optics express, vol. 15, no. 5, pp. 2145-2150, 2007.
    [16] M. Horowitz, Y. Barad, and Y. Silberberg, "Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser," Optics letters, vol. 22, no. 11, pp. 799-801, 1997.
    [17] D. Tang, L. Zhao, and B. Zhao, "Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser," Optics Express, vol. 13, no. 7, pp. 2289-2294, 2005.
    [18] C. Aguergaray, A. Runge, M. Erkintalo, and N. G. Broderick, "Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability," Optics letters, vol. 38, no. 15, pp. 2644-2646, 2013.
    [19] B. Sartorius et al., "All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths," Optics Express, vol. 16, no. 13, pp. 9565-9570, 2008.

    QR CODE