簡易檢索 / 詳目顯示

研究生: 楊延儒
Yang, Yan-Ru
論文名稱: 中空陰極管內之鈣離子飽和吸收光譜
Saturated Absorption Spectroscopy of Calcium Ions in a Hollow Cathode Lamp
指導教授: 王立邦
Wang, Li-Bang
口試委員: 劉怡維
Liu, Yi-Wei
崔祥辰
Chui, Hsiang-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 51
中文關鍵詞: 鈣離子飽和吸收速度交換碰撞中空陰極管頻譜參考
外文關鍵詞: calcium ion, saturation spectroscopy, velocity changing collision, hollow cathode lamp, line frequency reference
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們建立了飽和吸收光譜系統,並以中空陰極燈做為離子源。利用此系統量測鈣離子42S1/2能階到42P1/2能階的躍遷光譜,其對應的波長為397奈米。量測訊號進一步利用鎖相放大器放大。其量測結果為受到速度交換碰撞效應影響的飽和吸收光譜。此結果顯示出中空陰極燈可作為簡易有效的397奈米波長雷射參考源。利用速度交換碰撞效應的半古典理論分析,量測譜線為一勞倫茲函數搭配高斯函數作為背景,顯示出鈣離子與緩衝氣體發生強碰撞。透過增加鎖相放大器中的頻率,我們可以有效的減少速度交換碰撞效應。另外,透過鎖相放大器的相位資訊,我們可以估計速度交換碰撞效應發生所需要的時間範圍。


    We established a saturated absorption system where we used a hollow cathode lamp (HCL) as the ion source. We measured the 42S1/2 to 42P1/2 transition of calcium ion at 397 nm. The signal was amplified by a lock-in amplifier. Sub-Doppler profiles with velocity changing collision (VCC) effect of calcium ion has been measured. It shows that HCL is a simple and effective reference of 397 nm. By analyzing the fine profile by semiclassical model of VCC, it shows that the profile is a Lorentzian superimposed a Gaussian background and shows that there are strong collisions between calcium ions and buffer gas. By increasing the chopping frequency of the lock-in amplifier, we can reduce the VCC effect effectively. Besides, the phase recorded by the lock-in amplifier can provide information about time scale of VCC effect.

    摘要 abstract 致謝 目錄 chapter 1 Introduction.................1 chapter 2 Basic theory.................3 chapter 3 Experimental setup...........22 chapter 4 Results and discussion.......33 chapter 5 Conclusion...................49 Bibliography............................50

    [1] K. Hayasaka, M. Watanabe, H. Imajo, R.Ohmukai and S. Urabe. “Tunable 397-nm light source for spectroscopy obtained by frequency doubling of a diode laser” Applied optics vol. 33, No. 12 (1994)

    [2] G. Ritter, S.-M. Bae and U. Eichmann. “All-diode-laser cooling of single Ca+ ions” Appl. Phys. B 66, 609-612 (1998)

    [3] S. Urabe, M. Watanabe, H. Imajo and K. Hayasaka. “Laser cooling of trapped Ca+ and measurement of the 32D5/2 state lifetime” optics letters Vol. 17, No. 16 (1992)

    [4] H.L. Shu, H. Guan, X.R. Huang, J.M. Li and K.L. Gao. “A Single Laser Cooled Trapped 40Ca+ Ion in a Miniature Paul Trap” Chin. Phys. Lett., Vol. 22, No. 7 (2005) 1641

    [5] Q. Liu, Y. Huang, J. Cao, B.Q. Ou, B. Guo, H. Guan, X.R. Huang and K.L. Gao. “Frequency Measurement of the Electric Quadrupole Transition in a Single Laser-Cooled 40Ca+” Chin. Phys. Lett., Vol. 28, No. 1 (2011), 013201

    [6] S. Urabe, K. Hayasaka, M. Watanabe, H. Imajo, R.Ohmukai, and R. Hayashi. “Laser Cooling of a Single Ca+ Ion: Observation of Quantum Jumps” Appl. Phys. B 57, 367-371 (1993)

    [7] G. Ritter and U. Eichmann. “Lifetime of the Ca+ 32D5/2 level from quantum jump statistics of a single laser-cooled ion” J. Phys. B: At. Mol. Opt. Phys. 30 (1997) L141-L146.

    [8] R.L. Cavasso-Filho, A. Mirage, A. Scalabrin, D. Pereira and F.C. Cruz. “Laser spectroscopy of calcium in hollow-cathode discharges” J. Opt. Soc. Am. B 18 (2001), 1922

    [9] A.L. Wolf, S.A. van den Berg, C. Gohle, E.J. Salumbides, W. Ubachs, and K.S.E. Eikema. “Frequency metrology on the 42S1/2 - 42P1/2 transition in 40Ca+ for a comparison with quasar data” Phys. Rev. A, 78 (2009), 032511

    [10] W.E. Lamb, Jr., “Theory of an Optical Maser” Phys. Rev. 134, A1429 (1964)

    [11] J.L. Hall, H.G. Robinson, T. Baer, and L. Hollberg, in Advances in laser apectroscopy, F.T. Arechi, F. Strumia, and H. Walther, eds., (Plenum, New York, 1981)

    [12] W. Demtröder. “Laser Spectroscopy” Springer-Verlag, Berlin, 4th edition, (2008)

    [13] P.W. Smith and T. Hänsch, “Cross-Relaxation Effects in the Saturation of the 6328-A Neon-Laser Line” Phys. Rev. Lett, 26, 740-743 (1971).

    [14] J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M.Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U” J. Phys. B: At. Mol. Phys. 16 (1983) 4543-4553.

    [15] M. Mantina; A.C. Chamberlin; R. Valero; C.J. Cramer; D.G. Truhlar (2009). "Consistent van der Waals Radii for the Whole Main Group". J. Phys. Chem. A. 113 (19): 5806–12.

    [16] A. Bondi (1964). "van der Waals Volumes and Radii". J. Phys. Chem. 68: 441.

    [17] H. Eichhorn, H. Schoenbach, and T. Tessnow, “Paschen’s law for a hollow cathode discharge” Appl. Phys. Lett., Vol. 63, No. 18 (1993)

    [18] Dieter Meschede. “Optics, Light and Lasers” Wiley-VCH, 2004

    [19] H. Guan, Q. Liu, Y. Huang, B. Guo, W.C. Qu, J.A. Cao, G.L. Huang, X.R. Huang, K.L. Gao. “A 729 nm laser with ultra-narrow linewidth for probing 4S1/2–3D5/2 clock transition of 40Ca+” Opt. Commun., 284 (2011), 217

    QR CODE