研究生: |
徐大哲 Hsu, Da-Je |
---|---|
論文名稱: |
電漿輔助化學氣相沉積法合成石墨烯奈米壁之電化學活化與儲能元件之應用 Graphene nanowalls synthesized by plasma enhanced chemical vapor deposition for electrochemical activation and energy storage devices |
指導教授: |
胡啟章
Hu, Chi-Chang |
口試委員: |
黃昆平
Huang, Kun-Ping 張仍奎 Chang, Jeng-Kuei 董瑞安 Doong, Ruey-an 蔡德豪 Tsai, De-Hao |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 182 |
中文關鍵詞: | 微波電漿火炬 、電漿輔助化學氣相沉積 、石墨烯奈米壁 、電 化學活化 、奈米白金分散 、產氫催化 |
外文關鍵詞: | MPT PECVD,, electrochemical activation, Pt dispersion |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此研究發展電漿輔助化學氣相沉積法(Plasma-enhanced chemical vapor deposition, PECVD)製備石墨烯奈米壁(graphene nanowalls, GNWs)與氮摻雜石墨烯奈米壁 (N-doped graphene nano- walls, NGNWs)及石墨烯粉體。在有機相超級電容器方面的應用使用甲烷、乙烯及乙炔作為碳源前驅物,輔以氬氣、氮氣或氨氣電漿分別製備GNWs及NGNWs。石墨烯奈米壁的層數與品質可藉由調整前驅物流率、腔體壓力以及電漿處理時間達到控制。而電化學活化法則是在循環伏安測試中施加由開環路電位至相對較正(+2 V)或較負(-3 V)的電位(相對於Ag/AgNO3 in 1 M TEABF4/PC),隨著掃描圈數提升,陰離子或陽離子會往GNW及NGNW嵌入,撐開層間距使表面積提升,使更多離子吸附,達到電容值的提升,提升幅度可達原本的兩倍。藉由電化學活化法組成的非對稱超級電容器可在在4 kW kg-1的比功率下表現出30 Wh kg-1的比能量。
在不同碳源製備石墨烯奈米壁方面,發現未通入氨氣的狀況下,石墨烯與基材的附著性相當差。因此對於乙烯及乙炔而言,氨氣有助於提升成長之石墨烯與基材的附著性。除此之外,對於比電容值的表現也有些微提升,其中乙炔製備的NGNW經過電化學活化之比電容可達接近80 F g-1。且不論是何種碳源,在較低功率下(600 W)製備得到的石墨烯奈米壁之電化學表現較好。在全電池測試中,其操作電壓甚至可以達到4–4.2 V,而目前文獻在有機相超級電容器中,普遍電壓約為3.5 V左右,相較之下電壓高出了不少。而NGNW做為負極之下限電位可達-2.5 V,相較於常見的活性碳負極電位僅-2.0 V左右。
在微波電漿火炬的研究中可以藉由調整參數控制石墨烯的品質,而石墨烯粉體可以做為白金分散的載體使用,進而使電極擁有產氫催化能力。將白金絲作為對應電極,石墨烯塗佈的碳紙作為工作電極,在0.5 M硫酸電解液中與Ag/AgCl參考電極組成三極式系統,藉由循環伏安法將Pt分散至工作電極上。發現可在Pt含量極低的情況下擁有不錯的產氫催化能力,在9×10-4 mg cm-2的Pt含量下具有291 m2 g-1的電化學活性面積,跟不少文獻相比皆更高,推測是因為分散上去的白金為奈米級粒子。而在利用定電位法提高儲氫量的測試中也發現隨著時間的增加,氫脫負峰的變化與Pt的晶相有關,這點值得進一步深入探討。
以上研究結果顯示出微波電漿火炬法製備的各種結構之石墨烯具有相當廣泛的應用,除了可以藉由調整前驅物流率、壓力、時間等參數達到控制品質的目的。而石墨烯奈米壁在有機相超級電容器中,操作電壓可以達到4–4.2V,幾乎高於目前絕大多數研究。也可以藉由更換前驅物種類,達到異質元素摻雜或是獲得不同品質之石墨烯,具有相當的潛力。
In this research, a plasma-enhanced chemical vapor deposition (PECVD) method with the microwave plasma torch (MPT) technique was employed to produce graphene nanowalls (GNWs), N-doped graphnene nanowalls (NGNWs) and graphene powder. Methane, ehtylene, and acetylene were carbon source precursors and argon, nitrogen, or ammonia gases were employed as the carrier gas for preparing GNWs and NGNWs. The flow rate of precursors, pressure of the PECVD chamber, and plasma treatment time can be adjusting to control the qualities and layers of GNWs/NGNWs.
For electrochemical activation, a relatively positive potential window (from open circuit potential to +2 V) or negative potential window (from open circuit potential to -3 V) was applied in cyclic voltammetry (vs. Ag/AgNO3 in 1 M TEABF4/PC). In the activation process, anions or cations will intercalate into the graphene layer, resulting in the expansion of interlayer distance and leading to the enhancement of specific capacitance. An asymmetric supercapacitor composed of positive activated GNW and negative activated NGNW exhibited an energy density of 30 Wh kg-1 at 4 kW kg-1 power density.
In the preparation of graphene nanowalls from different carbon sources, it is found that the adhesion between graphene and substrate is quite poor without the introduction of ammonia gas. Therefore, for ethylene and acetylene carbon sources, ammonia is beneficial to improve the adhesion. The specific capacitance of NGNW prepared from acetylene can reach close to 80 F g-1 after electrochemical activation.
In the research of microwave plasma torch, the desired graphene quality can be grown by controlling the parameters, in which graphene powder can be used as a carrier for platinum dispersion, so that the electrode has the catalytic ability for hydrogen evolution reaction (HER). The platinum wire was used as the counter electrode, and the graphene produced by MPT tool coated carbon paper was used as the working electrode. The three-electrode system was assembling with Ag/AgCl reference electrode in 0.5 M H2SO4, and Pt was dispersed on the working electrode by cyclic voltammetry. It is found that it can have a good HER ability at Pt content of 9×10-4 mg cm-2 and has an electrochemically active surface area (EAS) of 291 m2 g-1. Such a high EAS might be attributed to the nanosize of Pt. In the test of increasing the hydrogen storage capacity by constant potential method, it was also found that with the increase of time, the change of the hydrogen desorption peak is related to the crystalline phase of Pt, this phenomenon needs further investigation.
The above results show that the graphene with various structures prepared by the microwave plasma torch has a wide range of applications, in addition to adjusting the precursor flow rate, pressure, time and other parameters to achieve the purpose of quality control. The cell voltages of GNW- and/or NGNW-based organice electric double layer capacitors (EDLCs) can reach 4.0-4.2 V, much higher than most researches on the organic EDLCs. The types of precursors can also be easily changed to achieve diverse graphene preparation, which has considerable potential for further application.
[1] M. Winter, R.J. Brodd, Chem. Rev., 2004, 104, 4245-4270.
[2] 科學發展2015年10月514期.
[3] Kohlschütter and P. Haenni, Z. Anorg. Allg. Chem., 1918, 105, 121–144.
[4] G. Ruess and F. Vogt, Monatshefte für Chemie., 1948, 78, 222–242.
[5] A. K. Geim and K. S. Novoselov, Nat. Mater., 2007, 6, 183-191.
[6] Andre K. Geim, Philip Kim, Scientific American, April 2008.
[7] C. G. Lee, X. D. Wei, Jeffrey W. Kysar, and James Hone, Science, 2008, 321, 385-388.
[8] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H.L. Stormer, Solid State Communications, 2008, 351-355.
[9] Alexander A. Balandin, Suchismita Ghosh, W. Z. Bao, Irene Calizo, Desalegne Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett., 2008, 8, 902-907.
[10] Meryl D. Stoller, Sungjin Park, Yanwu Zhu, Jinho An, and Rodney S. Ruoff, Nano Lett., 2008, 8, 3498-3502.
[11] Y. B. Tang, C. S. Lee, Z. H. Chen, G. D. Yuan, Z. H. Kang, L. B. Luo, et al., Nano Lett., 2009, 9, 1374-1377.
[12] X. Wang, L. Zhi, Mullen K., Nano Lett., 2008, 8, 323-327.
[13] P. K. Ang, W. Chen, A. T. S. Wee and K. P. Loh, J. Am. Chem. Soc., 2008, 130, 14392-14393.
[14] Meryl D. Stoller, S. Park, Y. Zhu, J. An, Rodney S. Ruoff., Nano Lett., 2008, 8, 3498-3502.
[15] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, et al., Nature, 2009, 457, 706-710.
[16] Y. Wang, Z. Q. Shi, Y. Huang, Y. F. Ma, C. Y. Wang, M. M. Chen, and Y. S. Chen, Phy. Chem. C., 113, 13103-13107.
[17] J. C. BERNÈDE, Chil. Chem. Soc., 2008, 53, 1549-1564.
[18] 胡啟章, 電化學原理與方法, 五南圖書出版股份有限公司, 2002.
[19] G. Ruess, F. Vogt, “Band gap effects in a two-dimensional regular polygonal graphene-like structure”, Monatshefte für Chemie, 1948, 78, 222–242.
[20] Segal, Michael, “Selling graphene by the ton”, Nature Nanotechnology, 2009, 4, 612-614.
[21] P. R. Somani, S. P. Somani, and M. Umeno, Chem. “Large Area C60 Film Obtained by Microwave Oven Irradiation from an Organic Resin”, Phys. Lett., 2006, 430, 56-59.
[22] Xinran Wang and Yi Shi, CHAPTER 1: Fabrication techniques of graphene nanostructures, in Nanofabrication and its Application in Renewable Energy, Published: January 30, 2014
[23] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science, 2009, 324, 1312-1314.
[24] H. Zhou,W. J. Yu, L. Liu L, R. Cheng, Y. Chen, X. Huang, Y. Liu, Y. Wang, Y. Huang and X. Duan, “Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene”, Nat. Commun., 2013, 4.
[25] J. Y. Choi, Nat. “Graphene Transfer: A Stamp for All Substrates”, Nanotechnol., 2013, 8, 311-312.
[26] J. Song, F. Y. Kam, R. Q. Png, W. Seah, J. Zhuo, G. Lim, P. K. H. Ho and L. Chua, “A universal, rapid method for clean transfer of nanostructures onto various substrates”, Nat. Nanotechnol., 2013, 8, 356-362.
[27] Roberto Muñoz, Cristina Gómez-Aleixandre, “Review of CVD Synthesis of Graphene”, Chem. Vap. Deposition, 2013, 19, 297–322.
[28] X. F. Wang, F. K. A. Shiral, Watson V, Bunker CE., “Synthesis of silver decorated graphene oxide with different concentrations of Ag using sonochemistry”, J. Am. Chem. Soc., 2012, 244.
[29] L. Ma, J. Wang and F. Ding, Chem., “Recent progress and challenges in graphene nanoribbon synthesis”, Phys. Chem., 2012, 14, 47-54.
[30] Jian Ru Gong, CHAPTER 9: Graphene Nanowalls, in New Progress on Graphene Research, Published: March 27, 2013
[31] John R. Miller, Ronald A. Outlaw, “Vertically-oriented graphene electric double layer capacitor designs”, J. Elec. Soc., 2015, 162, 5077-5082.
[32] 蘇清源, 江偉宏, 郭信良, 吳定宇, 陳貴賢, 許新城, 孫嘉良, 許淑婷, 沈駿, 邱鈺蛟, 蕭碩信, 張峰碩, 石墨烯技術 : 五南圖書出版股份有限公司, 2015.
[33] Z. Bo, Y. Yang, J. Chen, K. Yu, J. Yan, and K. Cen, “Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets”, Nanoscale, 2013, 5, 5180-5204.
[34] Z. Bo, S. Mao, Z. J. Han, K. Cen, J. H. Chen, and K. K. Ostrikov, “Emerging energy and environmental applications of vertically-oriented graphenes”, Chem. Soc. Rev., 2015, 44, 2108-2121.
[35] Malesevic, A., Vitchev, R., Schouteden, K., Volodin, A., Zhang, L., Van Tendeloo, G., et al., “Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition”, Nanotechnology, 2008, 19, 305064 .
[36] 張家豪, 魏鴻文, 翁政輝, 柳克強, 李安平, 寇崇善, 吳敏文, 曾錦清, 蔡文發, 鄭國川, 電漿源原理與應用之介紹, 物理雙月刊, 2006 , 28 (2).
[37] Cai, M., Outlaw, R. A., Butler, S. M., & Miller, J. R., “A high density of vertically-oriented graphenes for use in electric double layer capacitors”, Carbon, 2012, 50, 5481-5488.
[38] J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, H. Dai, Nature, 1998, 395, 878-881.
[39] T. Kato, G. H. Jeong, T. Hirata, R. Hatakeyama, K. Tohji, K. Motomiya, Chem. Phys. Lett., 2003, 381, 422-426.
[40] J. I. B. Wilson, N. Scheerbaum, S. Karim, N, Polwart, P. John, Y. Fan, A. G. Fitzgerald, Diamond Relat. Mater., 2002, 11, 918- 921.
[41] Y. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. Wang, E. Yenilmez, Q. Wang, J. F. Gibbons, Y. Nishi, H. Dai, Nano Lett., 2004, 4, 317-321.
[42] Derycke V., Martel R., Appenzeller J., Avouris P., “Controlling doping and carrier injection in carbon nanotube transistors”, Appl. Phys. Lett., 2002, 80, 2773-2775.
[43] Gon, K., Du F., Xia Z., Durstock M., Dai L., “Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction”, Science, 2009, 323, 760-764.
[44] Wang S. Y., Wang X., Jiang S. P., Langmuir, 2008, 24, 10505-10512.
[45] Wang S. Y., Yang F., Chen S. L., Jiang S. P., Wang X., Electrochem. Commun., 2010, 12, 1646-1649.
[46] Zhou C., Kong J., Yenilmez E., Dai H., Science, 2000, 290, 1552-1555.
[47] Schedin F., Geim A. K., Morozov S. V., Hill E. W., Blake P., Katsnelson M. I., Novoselov K. S., “Detection of individual gas molecules adsorbed on graphene”, Nat. Mater., 2007, 6, 652-655.
[48] Giovannetti G., Khomyakov P. A., Brocks G., Karpan V. M., van den Brink J., Kelly P. J., “Doping graphene with metal contacts”, Phys. Rev. Lett., 2008, 101, 026803.
[49] Chen W., Chen S., Qi D. C., Gao X. Y., Wee A. T. S., “Surface transfer p-type doping of epitaxial graphene”, J. Am. Chem. Soc., 2007, 129, 10418-10422.
[50] Biddinger E. J., Deak D. V., Ozkan U. S., “Nitrogen-containing carbon nanostructures as oxygen-reduction catalysts”, Topics in Catal., 2009, 52, 1566-1574.
[51] Kundu S., Nagaiah T. C., Xia W., Wang Y., Dommele S., V., Bitter J. H., Santa M., Grundmeier G., Bron M., Schuhmann W., Muhler M., “Electrocatalytic activity and stability of nitrogrn-containing carbon nanotubes in the oxygen reduction reaction”, J. Phys. Chem. C, 2009, 113, 14302-14310.
[52] Matter P. H., Zhang L., Ozkan U. S., “The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction”, J. Catal., 2006, 239, 83-96.
[53] Shao Y., Zhang S., Engelhard M. H., Li G., Shao G., Wang
Y., Liu J., Aksay I. A., Lin Y., “Nitrogen-doped graphene and its electrochemical applications”, J. Mater. Chem., 2010, 20, 7491-7496.
[54] Zhang L. P., Xia Z. H., “Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells”, J. Phys. Chem. C, 2011, 115, 11170-11176.
[55] Groves M. N., Chan A. S. W., Malardier-Jugroot C., Jugroot M., “Improving platinum catalyst binding energy to graphene through nitrogen doping”, Chem. Phys. Lett., 2009, 481, 214-219.
[56] Lherbier A., Blase X., Niquet Y. M., Triozon F., Roche S., “Charge transport in chemically doped 2D graphene”, Phys. Rev. Lett., 2008, 101, 036808.
[57] Wu M., Cao C., Jiang J. Z., “Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study”, Nanotechnology, 2010, 21, 505202.
[58] Deifallah M., McMillan P. F., Corà F., “Electronic and structural properties of two-dimensional carbon nitride graphenes”, J. Phys. Chem. C, 2008, 112, 5447-5453.
[59] Wei D., Liu Y., Wang Y., Zhang H., Huang L., Yu G., “Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties”, Nano Lett., 2009, 9, 1752-1758.
[60] Reddy A. L. M., Srivastava A., Gowda S. R., Gullapalli H., Dubey M., Ajayan P. M., “Synthesis of nitrogen-doped graphene films for lithium battery application”, ACS Nano, 2010, 4, 6337-6342.
[61] Jin Z., Yao J., Kittrell C., Tour J. M., “Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets”, ACS Nano, 2011, 5, 4112-4117.
[62] Imamura G., Saiki K., “Synthesis of nitrogen-doped graphene on Pt(111) by chemical vapor deposition”, J. Phys. Chem. C, 2011, 115, 10000-10005.
[63] Luo Z., Lim S., Tian Z., Shang J., Lai L., MacDonald B., Fu C., Shen Z., Yu, T., Lin J., “Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property”, J. Mater. Chem., 2011, 21, 8038.
[64] Zhang C., Fu L., Liu N., Liu M., Wang Y., Liu Z., “Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources”, Adv. Mater., 2011, 23, 1020-1024.
[65] Deng D., Pan X., Yu L., Cui Y., Jiang Y., Qi J., Li W. X., Fu Q., Ma X., Xue Q., Sun G., Bao X., “Toward N-doped graphene via solvothermal synthesis”, Chem. Mater., 2011, 23, 1188-1193.
[66] Droppa R., Hammer P., Carvalho A. C. M., dos Santos M. C., Alvarez F., “Incorporation of nitrogen in carbon nanotubes”, J. Non-Cryst. Solids, 2002, 299, 874-879.
[67] Journet C., Maser W. K., Bernier P., Loiseau A., Lamy de la Chapelle M., Lefrant, S., Deniard P., Lee R., Fischer J. E., “Large-scale production of single-walled carbon nanotubes by the electric-arc technique”, Nature, 1997, 388, 756-758.
[68] Suenaga K., Colliex C., Demoncy N., Loiseau A., Pascard H., Willaime F., “Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon”, Science, 1997, 278, 653-655.
[69] Panchakarla L. S., Subrahmanyam K. S., Saha S. K., Govindaraj A., Krishnamurthy H. R., Waghmare U. V., Rao C. N. R., “Synthesis, structure, and properties of boron- and nitrogen-doped graphene”, Adv. Mater., 2009, 21, 4726-4730.
[70] Ghosh A., Late D. J., Panchakarla L. S., Govindaraj A., Rao C. N. R. “NO2 and humidity sensing characteristics of few-layer graphenes”, J., Exp. Nanosci., 2009, 4, 313-322.
[71] Subrahmanyam K. S., Panchakarla L. S., Govindaraj A., Rao C. N. R., “Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method”, J. Phys. Chem. C, 2009, 113, 4257-4259.
[72] Guo B., Liu Q., Chen E., Zhu H., Fang L., Gong J. R., “Controllable N-doping of graphene”, Nano Lett., 2010, 10, 4975-4980.
[73] Geng D., Chen Y., Chen Y., Li Y., Li R., Sun X., Ye S., Knights S., “High oxygen-reduction activity and durability of nitrogen-doped graphene”, Energy Environ. Sci., 2011, 4, 760-764.
[74] Kinoshita K., Carbon: Electrochemical and Physicochemical Properties, Wiley: New York, 1988.
[75] Golberg D., Bando Y., Bourgeois L., Kurashima K., Sato T., “Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles”, Carbon, 2000, 38, 2017-2027.
[76] Morant C., Andrey J., Prieto P., Mendiola D., Sanz J. M., Elizalde E., “XPS characterization of nitrogen-doped carbon nanotubes”, Phys. Status Solidi A, 2006, 203, 1069-1075.
[77] Suenaga K., Johansson M. P., Hellgren N., Broitman E., Wallenberg L. R., Colliex C., Sundgren J. E., Hultman L., “Carbon nitride nanotubulite–densely-packed and well-aligned tubular nanostructures”, Chem. Phys. Lett., 1999, 300, 695-700.
[78] Jeong H. M., Lee J. W., Shin W. H., Choi Y. J., Shin H. J., Kang J. K., Choi J. W., “Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes”, Nano Lett., 2011, 11, 2472-2477.
[79] Lin Y. C., Lin C. Y., Chiu P. W., “Controllable graphene N-doping with ammonia plasma”, Appl. Phys. Lett., 2010, 96, 133110.
[80] Wang Y., Shao Y., Matson D. W., Li J., Lin Y., “Nitrogen-doped graphene and its application in electrochemical biosensing”, ACS Nano, 2010, 4, 1790-1798.
[81] Long D., Li W., Ling L., Miyawaki J., Mochida I., Yoon S. H., “Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide”, Langmuir, 2010, 26, 16096-16102.
[82] Wang D. W., Gentle I. R., Lu G. Q., “Enhanced electrochemical sensitivity of PtRh electrodes coated with nitrogen-doped graphene”, Electrochem. Commun., 2010, 12, 1423-1427.
[83] T. Y. Kim, G. Jung, S. Yoo, K. S. Suh, and R. S. Ruoff, “Activated graphene-based carbons as supercapacitor electrodes with macro-and mesopores”, J. ACS Nano, 2013, 8, 6899-6905.
[84] S. Wu, G. Chen, N. Y. Kim, K. Ni, W. C. Zeng , Y. Zhao, Z. C Tao, H. X. Ji, Z. H. Lee, and Y. W. Zhu, “Creating Pores on Graphene Platelets by Low-Temperature KOH Activation for Enhanced Electrochemical Performance”, Material Views, 2016, 17, 2376-2384.
[85] G. Wang, H. Wang, X. Lu, Y. Ling, M. Yu, T. Zhai, Y. Tong, Y. Li, “Solid‐state supercapacitor based on activated carbon cloths exhibits excellent rate capability”, Adv. Mater., 2014, 26, 2676-2682
[86] N.R. Gall , E.V. Rut’kov, A.Ya. Tontegode, “Intercalation of nickel atoms under two-dimensional graphene film on (111)Ir”, Carbon, 2000, 38, 663-667.
[87] Tianyu Liu, Cheng Zhu, Tianyi Kou, Marcus A. Worsley, Fang Qian, Cecilia Condes, Eric B. Duoss, Christopher M. Spadaccini, and Yat Li, “Ion Intercalation Induced Capacitance Improvement for Graphene‐Based Supercapacitor Electrodes”, Chem. Nano. Mat., 2016, 2, 635-641.
[88] M. Noel, R. Santhanam, “Electrochemistry of graphite intercalation compounds”, J. Power Sources, 1998, 72, 53–65.
[89] Z. Lei, N. Christov and X. S. Zhao, “Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes”, Energy Environ. Sci., 2011, 4, 1866–1873.
[90] Z. Lei, N. Christov, L. L. Zhang and X. S. Zhao, “Mesoporous carbon nanospheres with an excellent electrocapacitive performance”, J. Mater. Chem., 2011, 21, 2274-2281.
[91] M. Morita, R. Arizono, N. Yoshimoto, and M. Egashira, “On the electrochemical activation of alkali-treated soft carbon for advanced electrochemical capacitors”, J. Appl. Electrochem., 2014, 44, 447-453.
[92] H.D. Yoo, J.H. Jang, K. Cho, Y.P. Zheng, J.H. Ryu, S.M. Oh, “Effects of interlayer distance and van der Waals energy on electrochemical activation of partially reduced graphite oxide.”, Electrochim. Acta, 2015, 173, 827-833.
[93] H.K. Bok, S.M. Oh, Journal of The Electrochemical Society, 2008, 155, 685-692.
[94] H.D. Yoo, Y. Park, J.H. Ryu, S.M. Oh, Electrochimica Acta, 2011, 56, 9931-9936.
[95] M. Takeuchi, K. Koike, T. Maruyama, A. Mogami and M. Okamura, “Electrochemical lntercalation of Tetraethylammonium Tetrafluoroborate into KOH-Treated Carbon Consisting of Multi-Graphene Sheets for an Electric Double Layer Capaeitor”, Electrochemistry, 1998, 66, 1311-1317.
[96] M. Takeuchi, K. Koike, A. Mogami, T. Oyama, and H. Kobayashi, Electrochemistry, 69 (2001) 487-492.
[97] Y.W. Chi, C.C. Hu, H.H. Shen, K.P. Huang, Nano letters, 16 (2016) 5719-5727.
[98] N.C. Yeh, C.C. Hsu, J. Bagley, W.S. Tseng, Nanotechnology, 30 (2019) 162001.
[99] M.M. Hantel, R. Nesper, A. Wokaun, R. Kötz, Electrochimica Acta, 134 (2014) 459-470.
[100] Takeuchi M, Koike K, Maruyama T, Mogami A, Okamura M, Electrochemistry, 66 (1998) 1311–1317.
[101] Aida T, Murayama I, Yamada K, Morita M, J. Power Sources 166 (2007) 462–470.
[102] J.C. Gao, M. Yoshio, L. Qi, H.Y. Wang, Journal of Power Sources, 278 (2015) 452-457.
[103] J.A. Read, Journal of Physical Chemistry C, 119 (2015) 8438-8446.
[104] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.-L. Taberna, Science, 313 (2006) 1760-1763.
[105] M. Takeuchi, K. Koike, T. Maruyama, A. Mogami and M. Okamura, Electrochemistry, 1998, 66, 1311-1317.
[106] P.W. Ruch, M. Hahn, D. Cericola, A. Menzel, R. Kötz, A. Wokaun, Carbon, 48 (2010) 1880-1888.
[107] S. Ishimoto, Y. Asakawa, M. Shinya, K. Naoi, Journal of the Electrochemical Society, 156 (2009) A563-A571.
[108] P.W. Ruch, D. Cericola, A. Foelske-Schmitz, R. Kötz, A. Wokaun, Electrochimica Acta, 55 (2010) 4412-4420.
[109] 郭博堯, 全球化石能源危機時代與我國所面臨挑戰. 國政研究報告, 財團法人國家政策研究基金會.
[110] College of the Desert, “Module 1, Hydrogen Properties”, Revision 0, December 2001 Hydrogen Properties
[111] National Hydrogen Association; United States Department of Energy. The History of Hydrogen (PDF). hydrogenassociation.org. National Hydrogen Association: 1.
[112] J. O. M. Bockris, Int. J. Hydrogen Energy, 2002, 27, 731–740.
[113] M. S. Dresselhaus and I. L. Thomas, Nature, 2001, 414, 332.
[114] J. A. Turner, Science, 2004, 305, 972.
[115] N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 15729–15735.
[116] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis, Chem. Rev., 2010, 110, 6446–6473.
[117] X. Zou and Y. Zhang, Chem. Soc. Rev., 2015, 44, 5148– 5180.
[118] J. O. M. Bockris, I. A. Ammar, and A. K. M. S. Huq, J. Phys. Chem., 1957, 61, 7, 879–886.
[119] M. Chhetri, M. Rana, B. Loukya, P. K. Patil, R. Datta, U. K. Gautam, Adv. Mater. 2015, 27, 4430
[120] Z. Liu, J. Qi, M. Liu, S. Zhang, Q. Fan, H. Liu, K. Liu, H. Zheng, Y. Yin, C. Gao, Angew. Chem., Int. Ed. 2018, 57, 11678.
[121] G. R. Xu, J. J. Hui, T. Huang, Y. Chen, J. M. Lee, J. Power Sources 2015, 285, 393
[122] W. Sheng, Z. Zhuang, M. Gao, J. Zheng, J. G. Chen, Y. Yan, Nat. Commun. 2015, 6, 5848.
[123] Z. Li, R. X. Ge, J. W. Su, and L. Chen, Adv. Mater. Interfaces, 2020, 2000396.
[124] H. Huang, W. K. Zhang, Y. P. Gan, X. B. Zhang, J. P. Tu, Chinese Journal of Chemical Physics, 2005, 18, 428-432.
[125] Ota KI, Nishigori S, Kamiya N., J Electroanal Chem, 1988, 257, 205–15.
[126] Tian M, Cousins C, Beauchemin D, et al., ACS Catal, 2016, 6, 5108–16.
[127] Shao-Horn Y, Sheng WC, Chen S, et al., Top Catal, 2007, 46, 285–305.
[128] Topalov AA, Katsounaros I, Auinger M, et al., Angew Chemie Int Ed, 2012, 51, 12613–5.
[129] Dong G, Fang M, Wang H, et al., J Mater Chem A, 2015, 3, 13080–6.
[130] Aruna K. Kalasapurayil, and Manoharan Ramasamy, ChemistrySelect, 2016, 1, 6673 – 6680.
[131] B. E. Conway, J. O. M. Bockris, J. Chem. Phys., 1957, 26, 532–541.
[132] R. Parsons, Trans. Faraday Soc., 1958, 54, 1053–1063.
[133] M. Zeng and Y. G. Li, J. Mater. Chem. A, 2015, 3, 14942– 14962
[134] Gupta A., Chen G., Joshi P., Tadigadapa S., Eklund P. C., Nano Lett., 2006, 6, 2667– 2673.
[135] Graf D., Molitor F., Ensslin K., Stampfer C., Jungen A., Hierold C., Wirtz L., Nano Lett., 2007, 7, 238–242.
[136] Ferrari A. C., Meyer J. C., Scardaci V., Casiraghi C., Lazzeri
M., Mauri F., Piscanec S., Jiang D., Novoselov K. S., Roth S., et al., Phys. Rev. Lett., 2006, 97, 187401.
[137] Ni Z. H., Wang H. M., Kasim J., Fan H. M., Yu T., Wu Y. H., Feng Y. P., Shen Z. X., Nano Lett., 2007, 7, 2758–2763.
[138] S. Trasatti, Pure & Appl. Chem., 1986, 58, 955-966.
[139] M. Hahn, A. Würsig, R. Gallay, P. Novàk, R. Kötz, Electrochem. Comm., 2005, 7, 925-930.
[140] F.P. Campana, M. Hahn, A. Foelske, P. Ruch, R. Kötz, H. Siegenthaler, 2006, 8, 1363-1368.
[141] J. J. Ding, W. H. Yan, W. Xie, S. Sun, J. Bao and C. Gao, Nanoscale, 2014, 6, 2299-2306.
[142] Bo Wang, et al., J. Phys. Chem. C, 2017, 121, 9413−9423.
[143] Andrea Cortés, Carlos Celedón, and Ramón Zarate, J. Chil. Chem. Soc., 2015, 60, 2911-2913.
[144] Joshua Tracy, Otto Zietz, Samuel Olson and Jun Jiao, 2019, 14, 335.
[145] L. S. Kassel, Nature, 1930, 125, 926.
[146] K. M. Ervin, S. Gronert, S. E. Barlow, M. K. Gilles, A. G. Harrison, V. M. Bierbaum, C. H. DePuy, W. C. Lineberger, and G. B. Ellison, J. Am. Chem. Soc.,1990, 112, 5750-5759.
[147] K. Ostrikov, E. C. Neyts, M. Meyyappan, Adv. Phys., 2013, 62, 113-224.
[148] Da-Je Hsu, Yu-Wen Chi, Kun-Ping Huang, Chi-Chang Hu, Electrochimica Acta, 2019, 300, 324-332.
[149] F. Tuinstra, J. L. Koenig, J. Chem. Phys., 1970, 53, 1126-1130.
[150] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Physics Reports, 2009, 473, 51-87.
[151] Yoshitaka Fujimoto, Susumu Saito, Phys. Rev. B, 2011, 84, 245446.
[152] W. H. Bragg, W. L. Bragg, Royal Society, 1913, 88, 428-438.
[153] Darmstadt H., Cao N. Z., Pantea DM, Roy C., Sümmchen L., Roland U, Donnet J. B., Wang T. K., Peng C. H., Donnelly P. J., Rubber Chem. Technol., 2000, 73, 293-309.
[154] Albers P., Deller K., Despeyroux B. M., Schäfer A., Seibold K., J. Catal., 1992, 133, 467-478.
[155] Albers P., Deller K., Despeyroux B. M., Prescher G., Schäfer A., Seibold K., J. Catal.,1994, 150, 368-375.
[156] Darmstadt H., Sümmchen L., Roland U., Roy C., Kaliaguine S., Adnot A., Surf Interface Anal., 1997, 25, 245-253.
[157] Zhen-Hai Wen, Xin-Chen Wang, Shun Mao, Zheng Bo, Hae-June Kim, Shu-Mao Cui, Gan-Hua Lu, Xin-Liang Feng, Jun-Hong Chen, Adv. Mater., 2012, 24, 5610-5616.
[158] K. N. Kudin, B. Ozbas , H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, R. Car, Nano Lett., 2008, 8, 36-41.
[159] Zheng Bo, Yong Yang, Jun-Hong Chen, Kehan Yu, Jianhua Yana, and Kefa Cen, Nanoscale, 2013, 12, 5180-5204.
[160] Ping Chen, Jing-Jing Yang, Shan-Shan Li, Zheng Wang, TianYuan Xiao, Yu-Hong Qian, Shu-Hong Yu, Nano Energy, 2013, 2, 249-256.
[161] Zhu-Yin Sui, Yue-Na Meng, Pei-Wen Xiao, Zhi-Qiang Zhao, Zhi-Xiang Wei, Bao-Hang Han, ACS Appl. Mater. Interfaces, 2015, 7, 1431-1438.
[162] Jeong-Woo Lee, Jang-Myoun Ko, Jong-Duk Kim, Electrochimica Acta, 2012, 85, 459-466.
[163] Wei-Fan, Yong-Yao Xia, Weng-Weei Tjiu, P. K. Pallathadka, Chao-Bin He, Tian-Xi Liu, Power Sources, 2013, 243, 973-981.
[164] H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, J. W. Choi, Nano Letters, 2011, 11, 2472-2477.
[165] L. S. Panchokarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, C. N. R. Rao, Adv. Mater., 2009, 21, 4726–4730.
[166] F. Kapteijn, J. A. Moulijn, S. Matzner, H. P. Boehm, Carbon, 1999, 37, 1143–1150.
[167] A. Balducci, J. Power Source, 2016, 326, 534-540.
[168] L. Liu, L. J. Su, J. W. Lang, B. Hu, S. Xu, and X. B. Yan, J. Mater. Chem. A, 2017, 5, 5523-5531.
[169] Shuge Dai, Zhen Liu, Bote Zhao, Jianhuang Zeng, Hao Hu, Qiaobao Zhang, Dongchang Chen, Chong Qu, Dai Dang, Meilin Liu, J. Power Source, 2018, 387, 43-48.
[170] Runyu Yan, Markus Antonietti, and Martin Oschatz, Adv. Energy Mater, 2018, 8, 1800026.
[171] H. H. Shen and C. C. Hu, Electrochem. Commun., 2016, 70, 23-27.
[172] H. H. Shen and C. C. Hu, J. Electroanal. Chem., 2016, 779, 161-168.
[173] Huang, P. Y. et al., Nature, 2011, 469, 389-392.
[174] Yu, Q. et al., Nature Mater., 2011, 10, 443-449.
[175] Tsen, A. W. et al., Science, 2012, 336, 1143-1146.
[176] Lee, G.-H. et al., Science, 2013, 340, 1073-1076.
[177] Rasool, H. I. et al., Nature Commun., 2013, 4, 2811.
[178] C. L. Do, T. S. Pham, N. P. Nguyen, and V. Q. Tran, Adv. Nat. Sci., 2013, 4, 035011.
[179] Takahashi I. and Kocha S. S., J. Power Sources, 2010, 195, 6312.
[180] Pozio A., De Francesco M., Cemmi A., Cardellini F. and Giorgi L., J. Power Sources, 2002, 105, 13.
[181] Chaparro A. M., Martin A. J., Folgado M. A., Gallardo B. and Daza L., Int. J. Hydrogen Energy, 2009, 34, 4838.
[182] Arico A. S., Stassi A., Modica E., Ornelas R., Gatto I., Passalacqua E and Antonucci V., J. Power Sources, 2008, 178, 525.
[183] Cherstiouk O. V., Simonov A. N., Moseva N. S., Cherepanova S. V., Simonov P. A., Zaikovskii V. I. and Savinova E. R., Electrochim. Acta, 2010, 55, 8453.
[184] Kevin R. Cooper, In Situ PEM FC Electrochemical Surface Area And Catalyst Utilization Measurement, Scribner Associates Incorporated, 2017.
[185] J. Perez, E.R. Gonzalez, E.A. Ticianelli, Electrochim. Acta, 1998, 44, 1329.
[186] G. Tamizhmani, J.P. Dodelet, D. Guay, J. Electrochem. Soc., 1996, 143, 18.
[187] J. Fournier, G. Faubert, J.Y. Tilquin, R. Cote0 , D. Guay, J.P. Dodelet, J. Electrochem. Soc., 1997, 144, 146.
[188] F. Gloaguen, F. Andolfatto, R. Durand, P. Ozil, J. Appl. Electrochem., 1994, 24, 861.
[189] M. Ciureanu, H. Wang, J. Electrochem. Soc., 1999, 146, 4031.
[190] E.A. Ticianelli, J.G. Beery, S. Srinivasan, J. Appl. Electrochem., 1991, 21, 597.
[191] E. Antolini, L. Giorgi, A. Pozio, E. Passalacqua, J. Power Source, 1999, 77, 136.
[192] J. Durst, A. Siebel, C. Simon, F. Hasché, J. Herranz, H. A. Gasteiger, Energy Environ. Sci., 2014, 7, 2255–2260.
[193] M. J. Watt-Smith, J. M. Friedrich1, S. P. Rigby, T. R. Ralph and F. C. Walsh, J. Phys. D: Appl. Phys., 2008, 41, 174004.
[194] Patchkovskii S, Tse JS, Yurchenko SN et al., Proc Natl Acad Sci., 2005, 102, 10439–10444.
[195] Z. M. Ao, Q. Jiang, R. Q. Zhang, T. T. Tan, and S. Li, Journal of Applied Physics, 2009, 105, 074307.
[196] Diaz-Morales, O. Hersbach, T. J. P. Badan, C. Garcia, A. C. and Koper, M. T. M., Faraday Discuss, 2018, 210, 301–315.