研究生: |
洪耀宗 Yaw-Tzong Horng |
---|---|
論文名稱: |
電信材料之大氣腐蝕及其防治研究 Studies on Atmospheric Corrosion and Protection of Telecommunication Materials |
指導教授: |
施漢章
Han-Chang Shih |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 英文 |
論文頁數: | 137 |
中文關鍵詞: | 線路 、大氣腐蝕 、噴砂磨耗腐蝕 、電化學阻抗 、陰極防蝕 、接觸電阻 、孔蝕 |
外文關鍵詞: | outside plant, atmospheric corrosion, erosive wear corrosion, electrochemical impedance, cathodic protection, contact resistance, pitting corrosion |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
通信線路系統材料,通常包含:金屬材料、合金材料、電子接點、高分子材料及水泥建物等。 線路金屬材料與環境之交互作用產生不同型態之腐蝕。 金屬鍍層鋼線廣泛作為電纜之支撐物,在海岸地區此種支撐物經由腐蝕作用在短時間即會發生斷裂的情形。 因此在不同氣候區試驗三種不同鍍層厚度之熱浸鍍鋅鋼絞線、鍍鋁鋼材之大氣腐蝕曝露試驗,並利用多重回歸分析法分析鹽份及氣候因子之關係。 利用噴砂及磨耗試驗模擬海洋環境下,評估鍍鋅及鍍鋁鋼材在噴砂及海洋腐蝕作用下之相關性。 並利用電化學阻抗測試技術,測試鍍鋅、鍍鋁及鍍鋁鋅合金材料,在3%氯化鈉水溶液中之阻抗特性。
為數眾多的鉛被電纜,在台灣作為通信訊號之初級載體已超過二十年以上。 鉛被電纜置放在經常充滿水之人孔環境中,導致其鉛管厚度減少至一定程度時,障礙隨之發生,修護及更換此種設備相當昂貴。 因此應用非破壞性之鋅犧牲陽極工法在舊有鉛被電纜上,成為可行的方式。 除了可靠度外,並分析人孔中有害環境對鉛管之影響。 電子接點及接頭材料對通信者而言,其品質及可靠度相當重要。 本論文中並對鍍金、鍍銀及鍍鎳接點等三種不同鍍層材質,利用混合氣體腐蝕測試法及交流阻抗技術,探討在高溼度及低濃度二氧化硫及二氧化氮之接觸電阻及腐蝕特性。
由大氣腐蝕及磨耗腐蝕試驗研究結果顯示,鍍鋁鋼材在海洋環境下之耐蝕性優於鍍鋅鋼材達60%,鍍鋁鋼材之磨耗特性適用ductile-cutting model。 由電化學阻抗測試發現鍍鋁鋅鋼材與鍍鋁鋼材在海水環境中截然不同的是,鍍鋁鋅鋼材具有Warburg 擴散阻抗之特性,經過一年之曝露試驗後發現鍍鋁與鍍鋁鋅鋼材之電荷轉移阻抗值較高且其改變較鍍鋅鋼材小。 在氣體腐蝕試驗中顯示,鍍金接點在單一的二氧化硫氣體中,接觸電阻最穩定;在二氧化硫與二氧化氮混合氣體中,鍍銀接點則表現最佳,由電子顯微鏡之觀察結果顯示,鍍金、鍍銀及鍍鎳三種接點在上述氣體中均產生孔洞腐蝕現象。
The telecommunication systems outside plant are made of a variety of materials, including metals, alloys, electrical contacts, polymers, concrete structure and so on. The interaction between the outside plant metal components and the environment leads to various types of corrosion. Metal-coated steel wires are widely used as supports for telecommunication cables. In coastal areas the metal-coated steel wire corrodes and even fractures in a short time. Atmospheric corrosion exposure tests were made on three classes of hot-dip galvanizing steel, and aluminum-coated steel wire strands at different environmental sites. A two-step laboratory test, salt spray after sand blast, was designed to simulate windy coastal environments and this test was adopted to evaluate the zinc- and aluminum-coated steel by studying the mutual action of sand abrasion and marine corrosion. Measurements of electrochemical impedance have also been conducted for zinc, aluminum and aluminum-zinc metallic coatings in 3% NaCl aqueous solution.
Numerous lead-sheathed cables have been served as primary carriers of communication signals over twenty years at outside plants of Chunghwa Telecommunication Company (CHT) in the islands of Taiwan. Corrosion of lead-sheathed cables in aggressive flooded manhole’s environments causes a reduction of lead sleeve thickness in the cable sheaths, and when the reduction equals the extreme value of the lead sleeve thickness, failure occurs. Repair and replacement costs are expensive. At the request of CHT, a non-destructive method of applying zinc sacrificial anode cathodic protection (CP) to in-situ lead-sheathed cables has been undertaken. In addition to the reliability, such factors as the manhole’s environmental hazard of lead also analyzed.
The reliability and quality of the electrical contacts and connections are very important for the telecommunication users. This investigation concerns the influence of NO2 and SO2 at low concentration levels in high humid atmospheres on the corrosion of gold, silver and nickel-coated contact materials. The major testing technique includes mixed gas corrosion tests and AC impedance measurements also known as electrochemical impedance spectroscopy (EIS). Contact resistance and corrosion characteristic for the three types of the contacts are investigated and compared.
The results atmospheric corrosion test and erosive wear corrosion test showed that the aluminum-coated steel performed only 60% better than the zinc-coated steel. Also it was found that the erosive wear of zinc and aluminum-coated steels fit a ductile-cutting model. The electrochemical impedance spectroscopy of the aluminum-zinc coating revealed a characteristic Warburg impedance that was absent in compared with that of the aluminum coating. Both aluminum and aluminum-zinc coatings are found with a high charge transfer resistance that changes slightly even standing for one year’s exposure. The results of mixed-gas corrosion test show that the contact resistance was the most stable for gold-plated connector in SO2 atmosphere. But in a mixed SO2 + NO2 accelerated corrosion environments, silver-plated connectors were found to possess the best performance in the contact resistance. The atmosphere of the mixed SO2 and NO2 was found to be more corrosive than that of the single component SO2. All SEM analyses show that the pitting corrosion take place on all three types of the contacts.
1. N. D. Tomashov, ”Theory of Corrosion and Protection of Metals”, Moscow: Academy of Science, 1966.
2. W. Vernon, Trans. Faraday Soc., 23, 113(1927); ibid.,27,255(1931) and 31, 1668(1935); Trans. Electrochem. Soc., 64 (1933) 31.
3. D. Rice, P. Phipps, and R. Tremoureux, J. Electrochem. Soc.,,126, 1459(1979);127,563(1980).
4. Herbert H. Uhlig, ”Corrosion and Corrosion Control”, John Wiley & Sons,1984.
5. S.C. Chung, H.C. Shih and C.C. Hsien, Mater. Perform. 38 (1999) 40.
6. T.R. Tan, J.R. Cheng, J.H. Wang, J.G. Duh, H.C. Shih, Surf. Coat. Technol, 110 (1998) 194.
7. H.C. Shih, J.W. Hsu, C.N. Sun, S.C. Chung, Surf. Coat. Technol, 150 (2002) 70.
8. W. F. Adler, Wear 186 (1995) 35.
9. J. J. Friel, Corrosion, 42(1986) 422.
10. J.F. Smith, ″Corrosion of Lead and Lead Alloy″, Material Handbook, Corrosion 9th ed., ASTM International, Ohio (1988).
11. J. W. Costerton and J. Boivin, ”Microbially Influenced Corrosion and Biodeterioration”, p.5-89(1990).
12. R.U. Lee, “Statistical Analysis of Corrosion Failures of Lead-Sheathed Cables”, Mater. Perform. p.20-23(1992).
13. G. Haynes and Robert Baboian, “Field Corrosion Testing and Performance of Cable Shielding Materials in Sols”, Mater. Perform. pp.45-48 (1991).
14. B.M. Green, “In Situ Cathodic Protection of Existing Ductile Iron Pipes”, Mater. Perform., pp.45-48 (1991).
15. P.F. Preston, “An industrial atmosphere corrosion test for electric contacts and connectors”, Trans. Ins. Met. Fin., Vol. 50, pp.125-129, 1972.
16. R. G. Baker, “Studies of static low voltage contacts at the Bell Telephone Laboratories”, in Proc. 2nd Int. Symp. Electric Contact Phenomena, Graz, Austria, May 4-6, pp. 545-574,1964.
17. S. Zakipour, C. Leygraf, “Evaluation of laboratory tests to simulate indoor corrosion of electrical contact materials”, J. Electrochem. Soc., Vol. 133, No. 1, pp.21-30, 1986.
18. J.M. Costa, M. Morcillo, S. Feliu, “Effect of Environmental Parameters on Atmospheric Corrosion of Metals” in Encyclopedia of Environmental Control Technology, Vol. 2, ed. P.N. Cheremisinoff (Houston, TX:Gulf Publishing Company, 1989), p.197.
19. M. Benarie, F.L. Lipfert, Atmos. Environ. 20 (1986): p.1947.
20. S. Feliu, M. Morcillo, S. Feliu, Jr., Corros. Sci. 34 (1993): p.403,
21. S. Feliu, M. Morcillo, S. Feliu, Jr., Corros. Sci. 34 (1993): p.415.
22. G.A. King, B. Carberry, CSIRO Division of Building. Construction and Engineering, Australia, Technical Report 92/1 (1992).
23. R.U. Lee, “Statistical Analysis of Corrosion Failures of Lead-Sheathed Cables”, Mater. Perform. p.20-23(1992).
24. G. Haynes and Robert Baboian, “Field Corrosion Testing and Performance of Cable Shielding Materials in Solutions”, Mater. Perform. p.45-48 (1991).
25. B.M. Green, “In Situ Cathodic Protection of Existing Ductile Iron Pipes”, Mater. Perform., pp.45-48 (1991).
26. S.C. Chung, H.C. Shih and C.C. Hsien, Mater. Perform. 38 (1999) 40.
27.T.R. Tan, J.R. Cheng, J.H. Wang, J.G. Duh, H.C. Shih, Surf. Coat. Technol, 110 (1998) 194.
28.H.C. Shih, J.W. Hsu, C.N. Sun, S.C. Chung, Surf. Coat. Technol, 150 (2002) 70.
29.J.R. Cheng and H.C Shih, Corrosion Prevention & Control, February,1995, pp.21-24.
30.J.R. Cheng and H.C Shih, Corrosion Prevention & Control, April,1995, pp.37-41.
31J.R. Cheng, T.R. Tan, J.Z. Qio, M.Y. Wu and H.C Shih, Plating and Surface Finishing, December,1994, pp.59-64.
32. ASTM G 50-76, “Conducting Atmospheric Corrosion Tests on Metals”.
33.ASTM G33-72,”Recording Data from Atmospheric Corrosion Tests of Metallic-Coated Steel Specimens”.
34.T.S.Lee and K.L. Money, Mater.Perform., Aug.(1984) p.28.
35. S.W. Dean, Jr., Atmospheric Corrosion (1982): p 195.
36. ASTM A 475-89, “Zinc-Coated Steel Wire Strand”.
37. Y.T. Horng, T.C. Chang, I. Y., ”The Atmospheric Corrosion Study of Galvanized Steel Wire Strand in Taiwan”, 10th International Congress on Metallic Corrosion, India,1987, pp.27-33.
38. Y. T. Horng , J. H. Wang , T. C. Chang, H. P. Hsu, Y. -c. Lin, J. H. Lin, J. W. Hsu and H. C. Shih , ”Long-Term Atmospheric Corrosion Exposure of the Galvanized Steel and Aluminum-Coated Steel in Islands of Taiwan”, Mater. Perform., pp.32-36, March,2003.
39. ASTM A 474-94, “Aluminum-Coated Steel Wire Strand”.
40. J.M. Costa, M. Morcillo, S. Feliu, “Effect of Environmental Parameters on Atmospheric Corrosion of Metals” in Encyclopedia of Environmental Control Technology, Vol. 2, ed. P.N. Cheremisinoff (Houston, TX: Gulf Publishing Company, 1989), p.197.
41. M. Benarie, F.L. Lipfert, Atmos. Environ. 20 (1986): p.1947.
17. S. Feliu, M. Morcillo, S. Feliu, Jr., Corros. Sci. 34 (1993)403,
42. S. Feliu, M. Morcillo, S. Feliu, Jr., Corros. Sci. 34 (1993)415.
43. G.A. King, B. Carberry, CSIRO Division of Building. Construction and Engineering, Australia, Technical Report 92/1 (1992).
44. T.S. Lee , K.L. Money, Mater. Perform., Aug. (1984) 28.
45. Sheldon W. Dean Jr., Atmospheric Corrosion (1982) 195.
46. G. Schick, Corrosion, 57 (2001) 659.
47. H.H. Lawson, B.C. Syrett, ”Atmospheric Corrosion Test Methods”, Corrosion Testing Made Easy, Volume 4, Lawson Consultant, Inc. Middletown, Ohio.
48. E. A. Baker, T. S. Lee, “Calibration of Atmospheric Corrosion Test Sites”, “Atmospheric Corrosion of Metals”, S.W. Dean Jr., E.C. Rhea, eds., ASTM STP 767,(Philadelphia, PA: ASTM, 1982), pp. 250-266.
49. H.R. Ambler, A.A.J. Bain, J. Appl. Chem. 5, (1995) 437.
50. Z.K.A. Moszynki, J. Appl. Chem. 10, May (1960) 211.
51. ASTM G 1-90,“Preparing,Cleaning, and Evaluating Corrosion Test Specimens”.
52. ISO-DIS 8565.2, “Metals and Alloys-Atmospheric Corrosion Testing-General
Requirement for Field Test”(Geneva, Switzerland: ISO,1991).
53. S.C. Chung, J.R. Cheng, S.D. Chiou, H.C. Shih, Corros. Sci. 42 (2000) 1249.
54. S.C Chung, S.L. Sung, C.C. Hsien and H.C. Shih, J. Appl. Electrochem., 30 (2000) 607.
55. R.Grauer and W. Feitknecht, Corros. Sci. 7 (1967) 629.
56.S.C. Chung, Y.M. Liou, M.S. Shiu and H.C. Shih, Corrosion Prevention & Control, December 1999, pp.163-168.
57. T. Falk, J.E. Svensson and L.G. Johansson, J. Electrochem. Soc. 145(1998) 39.
58. S.C. Chung, A.S. Lin, J.R. Cheng, H.C. Shih, Corros. Sci. 42 (2000) 1599.
59.H.C. Shih, J.C. Oung, J.T. Hsu, J.Y. Wu, F.I. Wei, Mat. Chem. Phys. 37 (1994) 230.
60.S.C. Chung and H.C. Shih, C.C. Hsien, Mater. Perform., 38 (1999) 40.
61.Y.T. Horng, Yiang I, T.C. Chang, “The atmospheric corrosion study of galvanized steel wire strand in Taiwan”, Proc.10th Int. Congress on Metal Corrosion, Oxford and IBH press, India,1987, p.27.
62.W. F. Adler, Wear 186 (1995) 35.
63.J.H. Wang, Y.T. Horng, Y. I. ,”An electrochemical Investigation of Wear-corrosion of Metals in Armored Submarine Cable”, 7th Asian-Pacific Corrosion Control Conference, p.1258(1991).
64.J.H. Wang, Y.T. Horng, Y. I. ,”Wear-corrosion of Galvanized Steel and Stainless Armor Wire in Submarine Cable”, Proceedings of 40th International Wire and Cable Symposium,p.511(1991).
65.Y. T. Horng, T. C. Chang, J. W. Hsu and H. C. Shih ,”The erosive wear and corrosion behavior of zinc- and aluminum-coated steels in simulated coastal environment”, Surf. Coat. Technol., Vol. 168, pp.209-215(2003).
66.T.C. Chang, Y.T. Horng, Y. I. ,”A Simulative Laboratory Test for Evaluation of Metallic Corrosion in Windy Coastal Atmosphere”,10th International Congress on Metallic Corrosion,India,1987,pp.9-15.
67.O.P. Modi, M. Saxena, B.K. Prasad, A.H. Yegneswaran, M.L.Vaidya, J.Mater. Sci. 27 (1992) 3897.
68. M. Saxena ,O.P. Modi, M. Saxena, B.K. Prasad, A.K Jha, Wear 169 (1993) 119.
69. A. Neville, T. Hodgkiess and J.T. Dallas, Wear 186 (1995) 497.
70.P.J.Slikkerveer, P.C.P.Bouten, F.H.in’t Veld, H.Scholten, Wear 217 (1998) 237.
71. R.A. Bagnold, Proc. Roy. Soc., London, Series A. 187 (1946) 1.
72. R.A. Bagnold, J. Inst. Civil Engrs., 27 (1947) 447.
73. Galvanizing Manual, ZALAS, Australia, (1989) 21.
74. D.K. Shetty, I.G. Wright, A.H. Clauer, J.H. Peterson, and W.E. Merz, Material Performance 38 (1983) 500.
75. I. Finnie, Wear,3 (1960) 87.
76. M. Buijs, J. Am. Ceram. Soc. 77 (6) (1994) 1676.
77. L. Murugesh, R.O. Scattergood, J. Mater. Sci. 26 (1991) 5456.
78. S.M. Wiederhorn, B.J. Hockey, J. Mater. Sci. 18 (1983) 766.
79. D.B. Marshall, B.R. Lawn, A.G. Evans, J.Am. Ceram. Soc. 65 (11) (1982) 561.
80. B.R. Lawn, A.G. Evans, D.B. Marshall, J.Am. Ceram. Soc. 63 (9-10) (1980) 574.
81. A.G. Evans, M.E. Gulden, and M. Rosenblatt, Proc. Royal Society (London), A361, (1978) 343.
82. J.G.A. Bitter, Wear 6 (1963) 169.
83.V. Kucera, E. Mattsson, “Atmospheric Corrosion” in Corrosion Mechanisms”, New York, NY: Marcel Dekker, 1987.
84.J.J. Friel, Corrosion, 42(1986) 422.
85.S.C. Chung, H.C. Shih and C.C. Hsien, Mater. Perform. 38 (1999) 40.
86.T.R. Tan, J.R. Cheng, J.H. Wang, J.G. Duh, H.C. Shih, Surf. Coat. Technol, 110 (1998) 194.
87.Franz Theiler, Corro. Sci., 14(1974)405.
88.B.E. Townsend and A.R. Borzillo, Mater. Perform., July(1987) p.37.
89.J.H. Wang, Y.T. Horng, H.F. Lin and H.P. Hsu,”Simulation of the Atmospheric Corrosion by the Accelerated Corrosion Test and EIS Measurements”, 10th Asian Pacific Corrosion Control Conference, pp.12.1-12.6(1997).
90.J.H. Wang, Y.T. Horng, K.Y. Chen, “In Situ Electrochemical Impedance Study on the Sulfur-dioxide Induced Corrosion of Metals”, 9th Asian Pacific Corrosion Control Conference, Vol.2, pp.925-929(1995).
91. Stern, M. and Geary, A.L., J. Electrochem. Soc., 104 (1957)56.
92. J.A. Gonzalez, A. Molina, M.L. Escudero and C. Andrade, Corro. Sci., 25 (1985) 917.
93. J. R. Macdonald, Impedance Spectroscopy, pp.13-132, John Wiley & Sons, New York, 1987.
94. D. A. Jones, Principles and Prevention of Corrosion, 2nd ed., Prentice-Hall, Inc., 1996.
95. F. Mansfeld, Electrochimica Acta , Vol. 35, pp. 1533, 1990.
96. W. S. Tait, An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, pp. 79-93, Pair O Docs, Wisconsin, 1994.
97. ASTM G-50-76, “Conducting Atmospheric Corrosion Tests on Metals”.
98.ASTM G-33-72,”Recording Data from Atmospheric Corrosion Tests of Metallic-Coated Steel Specimens”.
99. T.S.Lee and K.L. Money, Mater. Perform., Aug.(1984) p.28.
100. S.W. Dean, J. Atmospheric Corrosion (1982): p 195.
101. J. Bubrecht, J. Vereecken and M. Piens, J. Electrochem. Soc. 131(1984) 2010.
102.J.F. Mclntyre and Henry Leidheiser, J. Electrochem. Soc. 133 (1986) 43.
103.A. Bonnel and F. Dabosi, J. Electrochem. Soc. 130(1983) 753.
104.M.G.S. Ferreira and J.L. Dawson, J. Electrochem. Soc. 132(1985) 760.
105.Isarel Rubinstein, J. Electrochem. Soc. 133(1986) 729.
106.P.F. Preston, “An industrial atmosphere corrosion test for electric contacts and connectors”, Trans. Ins. Met. Fin., Vol. 50, pp.125-129, 1972.
107.R. G. Baker, “Studies of static low voltage contacts at the Bell Telephone Laboratories”, in Proc. 2nd Int. Symp. Electric Contact Phenomena, Graz, Austria, May 4-6, pp. 545-574,1964.
108.S. Zakipour, C. Leygraf, “Evaluation of laboratory tests to simulate indoor corrosion of electrical contact materials”, J. Electrochem. Soc., Vol. 133, No. 1, pp.21-30, 1986.
109.T.E. Graedel and N. Schwartz, “Air quality reference data for corrosion assessment”, Mater. Perform., pp.17-25, 1977.
110.. C. Leygraf and S. Zakipour, “Field and laboratory corrosion tests of Au- and Sn-plated contact materials”, Proc. 9th Int. Congress on Metallic Corrosion, pp 304-310, 1986.
111. O.A. Svedung, G. Johannson, and G. Vannerberg, ”Corrosion of gold-coated materials exposed to humid atmospheres containing low concentrations of SO2 and NO2”, IEEE Trans. Components, Hybrids, Manuf. Technol., Vol. CHMT-6, pp.349-355, 1983.
112. D.W. Rice, P. Peterson, E.B.P. Phipps, and R.J. Cappel, R. Tremoureux,”Atmospheric corrosion of copper and silver”, J. Electrochem. Soc., Vol. 128, No. 2, pp.275-284, 1981.
113. R.S. Mroczkowski, ”Corrosion and Electrical Contact Interfaces”, The International Corrosion Forum Devoted Exclusively to the Protection and Performance of Materials, Paper No. 328, Corrosion 85, Boston, MA., March 25-29, 1985.
114. H.C. Shih, J.W. Hs, ”Corrosion of the Electrical Contact Unterfaces”, 2001 Conference on Electronic Contact and Connector, Paper K-48, Chinese Culture University, Taipei, Taiwan, December 6-7, 2001.
115. J. Potinecke, “Behavior of contact surfaces containing of gold alloys in H2S-NO2-SO2 atmospheres”, IEEE Trans. Components, Hybrids, Manuf. Technol., Vol. CHMT-1, pp.86-89, 1978.
116. W.H. Abott, “ The effects of test environment on the creep of surface film over gold’, in Proc. Holm. Conf. on Electrical contacts”, pp. 47-52, 1984.
117. M. Antler, “Measurement of contact resistance”, in Gold Plating Technology, F.H. reid and W. Goldie, Eds., Ayr. Scotland: Electrochemical Publications, 1974, ch.26, pp.334-344.
118. “Standard practice or construction and use of a probe for measuring electrical contact resistance”, B 667-80, American Society for Testing and Materials, 1916 Race St., Philadelphia, PA, 19103.
119. Kei-Ichi Yasuda, Shigeru Umemura and Takeshi Aoki, ”Degradation Mechanisms in Tin- and Gold-plated Connector Contacts”, IEEE Trans. Components, Hybrids, and Manuf. Technol., Vol. CHMT-10,No.3, pp.456-462, 1987.
120. D.Siman, M. Bujor and J. Bardolle, the 9th Int. Conf. on Electrical Contact Phenomena, Chicago, Sept. 11-15. 1978.
121. H. H. Uhlig, R. Winston Revie,”Corrosion and Corrosion Control”, 3rd ed., Chap.8, p.172, John Wiley & Sons, Inc., New York (1985).
122. J.F. Smith, ″Corrosion of Lead and Lead Alloy″, Material Handbook, Corrosion 9th ed., ASTM International, Ohio (1988).
123. J.W. Costerton and J. Boivin, ″Microbially Influenced Corrosion and Biodeterioration″, p.5-89(1990).
124. J.H. Wang, Y.T. Horng, Yiang. I, “Effect of Alternating Current on Corrosion of Mechanical Splice Closures in Underground Cable Plant”, Proceedings of 39th International Wire and Cable Symposium, pp.229-236(1990).
125. J.H. Wang, Y.T. Horng, H.P. Hsu and K. Y. Chen, ”The Effect of Sulfur-reducing Bacteria on the Corrosion in Fiber Optical Cable”, Proceedings of 43th International Wire and Cable Symposium, pp.488-493(1994).
126. J.H. Wang, Y.T. Horng, H.P. Hsu, Y.-c. Lin and K.Y. Chen, ”A Study on Corrosion Inhibition in Sulfur Dioxide Induced Corrosion of Metala and Plated Contacts”, 9th Asian-Pacific Corrosion Control Conference, Vol.1, pp.409-413(1995).
127. R.U. Lee, ″Statistical Analysis of Corrosion Failures of Lead-Sheathed Cables″, Mater. Perform. p.20-23 (1992).
128. G. Haynes and Robert Baboian, ″Field Corrosion Testing and Performance of Cable Shielding Materials in Solutions″, Mater. Perform. p.45-48 (1991).
129. B.M. Green, ″In Situ Cathodic Protection of Existing Ductile Iron Pipes″, Mater. Perform., pp.45-48 (1991).
130. Y. T. Horng , J. H. Wang , J. W. Hsu, H. P. Hsu, Y. -c. Lin, L. J. Liu, and H. C. Shih, “Cathodic Protection of Lead-Sheathed Telecommunication Cables in Manholes”, Mater. Perform., accepted, May,2003.
131. D.H. Kroon and C.F. Schrieber, ″Performance of Impressed Current Anodes for Cathodic Protection Underground″, CORROSION/84, Paper No. 44, National Association of Corrosion Engineers, Houston, TX,1984.
132. M. Pourbaix, Atlas of Electrochemical Equilibrium in Aqueous Solutions (Houston, TX: NACE, 1974).
133. H. H. Uhlig and R.W.Revie, “Corrosion and corrosion Control”, 3rd ed., Chap.5, p.74, John Wiley & Sons, Inc., New York (1985).