簡易檢索 / 詳目顯示

研究生: 高健薰
論文名稱: PLZT系列鐵電薄膜應用於光波導元件之製程及其特性之研究
Preparation and properties of PLZT Series Ferroelectric Thin Films Applied in Optical Waveguide Devices
指導教授: 蔡春鴻
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 207
中文關鍵詞: 鋯鈦酸鉛鑭金屬有機裂解製程脈衝雷射剝鍍線性電光效應二次電光效應脊型光波導元件
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋯鈦酸鉛鑭(PLZT)系列鐵電薄膜包括未摻雜鑭之鋯鈦酸鉛(PZT)與未摻雜鋯之鈦酸鉛鑭(PLT)均具有良好之光穿透性與強電光效應,依其組成成分的差異,分別在光記憶體、光開關、光調制器與光波導等電光元件與積體光學元件應用上極具潛力,在光通訊產業蓬勃發展的今日,已成為廣受矚目的研究課題。然而因為PLZT系列等材料為多元複合固溶體,缺乏一種對各組成成分均有相近蝕刻速率之蝕刻材料,導致在製作光波導型積體光學元件之結構構形時非常困難,必須尋求一種簡單,具量產潛力的構形技術加以取代。
    在PLZT系列薄膜製程與特性探討方面,本論文研究中分別提出了數種新的製程方法以改進目前被研究者所採用的技術。對於具有良好組成成分操控性與成本低廉的金屬有機裂解製程(MOD),本研究運用摻雜PZT雙烷基氧化物微粉法改善了傳統MOD法所製備之PZT薄膜之磊晶品質及其光穿透性,也證實這些微粉的添加並不會影響表面粗糙度,反而能有效提升其鐵電性質。然而,屬於高溫製程之添加PZT微粉MOD法,在製作光波導元件時仍必須面對直接蝕刻PZT薄膜之困難。
    在本論文中則提出一種先低溫成長、再高溫退火成相的兩段式加熱法,配合KrF準分子脈衝雷射與Nd:YAG脈衝雷射兩種不同類型與特性之脈衝雷射剝鍍(PLD)光源製作PLZT系列薄膜,在研究中發現,兩段式加熱法在製鍍高鑭含量之PLZT(28/0/100)具有最易形成高織構晶態結構之特點,其在短波長區即具有良好之光穿透性、高折射係數、低吸收等優於高溫加熱PLD製程之品質,在光通訊用途之1550 nm長波區,PLZT(28/0/100)平面型薄膜光波導傳輸損耗更可低至2 dB/cm以下。至於線性電光效應經以稜鏡耦合法量測,在波長633 nm時雙折射偏移D(ne-n0)可達-0.0168,線性電光係數則有gc =-127.1 pm/V。對於 二次電光效應則以Z軸掃描法測量,利用二倍頻Nd:YAG脈衝雷射光源(波長532nm)測得二次非線性折射係數nI = -4.86 ×10-8(esu),等效二次電光係數Reff = 0.37 ×10-16(m2/V2)。
    此一兩段式加熱PLD製程成功地在低於光阻可忍受溫度(150℃)以下製作出厚度達0.6 mm之品質優良的高織構晶態PLZT(28/0/100)薄膜,使得黃光剝離法用於製作脊型光波導元件構造成為可行。在研究中發現,高氧壓製程條件使運用正光罩曝光直接製作略帶外張側璧之光阻溝槽,在剝離過程中會損壞光波導線條結構,而運用負光罩極性反轉曝光製作出正梯形側璧脊型光波導結構是較理想的製程方案。在Mach-Zehnder干涉儀式光開關之元件結構之製作方面,係將兩段式加熱PLD製程所製作PLZT(28/0/100)薄膜所測各項光學與電光效應參數代入BeamPROP軟體中模擬設計,得出最可行之幾何結構,然後使用反轉曝光黃光剝離法製作波導結構圖紋,再以正光罩黃光剝離法製作電極結構,成功地製作出Mach-Zehnder干涉儀元件。


    目 錄 章節 主題 頁次 摘要………………………………………………..………….Ⅰ 誌謝…………………………………………………..……….Ⅲ 目錄…………………………………………………..……….Ⅳ 表目錄……………………………………………….….…….Ⅸ 圖目錄………………………………………………...………Ⅹ 第一章 前言……………………………… ………………..………....1 1-1 研究背景……………………………………………………...….1 1-2 研究動機與目的………………………………………...……….3 第二章 文獻回顧 2-1鐵電陶瓷之晶體結構………………….…………………..….….5 2-1-1晶體結構與其特性……………………………….……...….5 2-1-2相變化與其特性…………………………………..……..….5 2-2 鋯鈦酸鉛(PZT)材料….………………………………….………7 2-2-1鉛系鈣鈦礦之結晶結構…………………………..….…..…7 2-2-2 PZT之相圖與特性…………………………….…….……...7 2-3 鋯鈦酸鉛鑭(PLZT)材料………………………………………...9 2-3-1 鑭摻雜對光穿透性之影響…………………………...……9 2-3-2 PLZT之成份組成與相圖…..………………………………9 2-3-4 PLZT之結晶結構……………………………………...….10 2-4 PZT、PLZT薄膜之製備方法…………………………….……12 2-4-1 單晶陶瓷與靶材之製備……………………………….…12 2-4-2 液相溶液成膜法……...………………………………..…12 2-4-3化學氣相沈積法……………………………………..…….14 2-4-4磁控濺鍍法(magnetron sputtering)……...………..……….14 2-4-5脈衝雷射剝鍍法(PLD)…..………………………………..15 2-5 PZT、PLZT薄膜之特性與應用…………………………….….17 2-5-1光學性質……………………………………………….…..17 2-5-2 電光特性………………………………………………….19 2-6積體光學元件之應用…………………………………………..23 2-6-1 光波導(Optical waveguide)元件…………………………23 2-6-2 光閘(Optical switch)元件………………………………...24 2-6-3記憶體元件之應用………………………………………..24 2-6-4致動元件之應用…………………………………………..25 2-6-5感測元件之應用………………………………………..…26 2-6-6紅外線感測元件…………………………………………..26 2-6-7壓電感測元件……………………………………………..26 第二章 參考文獻………………………………………………………27 第三章、理論基礎 3-1光波導理論……………………………………………………...57 3-1-1二維波導理論……………………………………………..57 3-1-2 三維波導理論…………………………………………….64 3-2稜鏡耦合技術…………….……………………………………..70 3-2-1稜鏡耦合原理…………………………………………..…70 3-2-2端面耦合原理……………………………………………...71 3-2-3薄膜折射率係數之量測………………………………...…71 3-3電光效應………..……………………………………………….74 3-3-1 折射係數橢圓球……………………………………….…74 3-3-2 電光效應與折射係數變化……………………………….75 3-3-3電光效應量測方法……………………………………..…79 3-4光波導之傳輸損耗…………...…………………………………83 3-4-1 光損耗之來源………………………………………….....83 3-4-2 光損耗之量測………………………………………….…84 第三章參考文獻……………..…………………………………………87 第四章 實驗方法 4-1 金屬有機裂解鍍膜(MOD)製程………………………………103 4-1-1 起始材料之調製………………………………………...103 4-1-2 奈米微粉之調製………………………………………...104 4-1-3 PZT薄膜之製鍍程序……………………………………105 4-1-4 極化電性量測樣本製作………………………………...106 4-2 準分子脈衝雷射剝鍍(PLD)製程…………………………….107 4-2-1 靶材製作與基板整備…………………………………...107 4-2-2 脈衝雷射剝鍍………………………………………...…108 4-3 Nd:YAG脈衝雷射剝鍍(PLD)製程……………………….…110 4-3-1 製程腔體的設計與組配………………………………...110 4-3-2 靶材製作與基板整備…………………………...………111 4-3-3 Nd:YAG脈衝雷射剝鍍程序……………………………112 4-4 光波導元件結構設計與黃光剝離製程………………………113 4-4-1 脊型光波導結構之理論計算與模擬………………...…113 4-4-2 黃光剝離製程…………………………………………...114 4-5 薄膜特性之量測………………………………………………117 4-5-1薄膜厚度之量測………………………………………….117 4-5-2 薄膜結晶結構之量測………………………………...…118 4-5-3 表面形貌之量測………………………………………...119 4-5-4 薄膜光學特性之量測…………………………………...119 4-5-4 薄膜電光特性之量測…………………………………...120 4-5-5 光傳輸特性之量測……………………………………...121 第四章 參考文獻……………………………………………………..122 第五章 結果與討論 5-1 以摻雜奈米微粉之金屬有機裂解製程製鍍PZT薄膜之探討……………………………………………………………...134 5-1-1 晶態特性探討…………………………………………...134 5-1-2 摻雜微粉製程對薄膜厚度之影響…………………...…136 5-1-3 鐵電特性之探討………………………………………...137 5-1-4 薄膜表面特性之探討…………………………………...137 5-1-5 光學特性之探討………………………………………...138 5-2 以準分子脈衝雷射剝鍍製程製備PLZT系列薄膜之探討….140 5-2-1 兩段式加溫成相PLD製程晶態特性探討……………..140 5-2-2 退火溫度與壓力對PLZT薄膜晶態之影響……………142 5-2-3 磊晶PLZT薄膜之製備與其光學特性之探討…………144 5-3 以Nd:YAG脈衝雷射剝鍍製程製備PLZT系列薄膜之探討150 5-3-1 薄膜表面微粒之抑制…………………………………...150 5-3-2 薄膜晶態之控制………………………………………...150 5-3-3 光穿透特性……………………………………………...151 5-3-4 光傳輸損耗……………………………………………...151 5-3-5 線性電光效應………………………………………..….152 5-3-6 二次電光效應…………………………………………...153 5-4 光波導元件結構設計與模擬…………………………………155 5-4-1 單波導元件之設計與模擬…………………………..….155 5-4-2 Y型光波導分光器元件之設計與模擬………………….156 5-4-3 Mach-Zehnder 干涉儀式光開關之設計與模擬………..156 5-5 光波導元件黃光剝離製程探討………………………………158 5-5-1 正光罩黃光製程之探討………………………………...158 5-5-2 正光罩黃光剝離製程之探討……………………….…..160 5-5-3 負光罩黃光剝離製程之探討…………………………...161 第五章 參考文獻……………………………………………………..162 第六章 結論…………………….…………………………..205

    [2.1] F. Jona and G. Shirane, Ferroelectric Crystals, Pergamon Press, 1962
    [2.2] Y. Xu, Ferroelectric Materials and Their Applications, Elsevier Science Publishers, 1991
    [2.3] K. Uchino, “Ferroelectric devices”, Marcel Dekker, (2000).
    [2.4] 詹國禎, 朱建國 “電子與光電子材料” 新文系開發出版公司, 80-155, (2002)
    [2.5] G.H. Haertling and C.E. Land, “Hot-pressed (Pb, La)(Zr,Ti)O3 Ferroelectric Ceramics for Electrooptic Applications” J. Amer. Ceram. Soc.,54[1]1-11(1971)
    [2.6] C.E. Land and P.D. Thacher, “Ferroelectric Ceramic Electrooptic Materials and Devices” Proc. IEEE, 57[5](1969)
    [2.7] C.E. Land and G.H. Haertling, “Optical Properties of Ferroelectric Ceramics.,” J. Phys. Soc. Ja., Suppl., 28, 96-99 (1970)
    [2.8] G.H. Haertling, “Hot-pressed Ferroelectric Lead Zirconate Titanate Ceramics for Hectro-optical Applications,” Amer. Ceram. Soc. Bull., 49[6]564-567(1970)
    [2.9] G.H. HaerHing, “PLZT Electrooptic Materials and Applications-a Review”, Ferroelectrics, 75,25-55(1987)
    [2.10] C. Land, P. Thacher and G. Haertling “Electrooptic Ceramics,” Applied solid state Science, Advances in Materials and Device Research, 4, 137-233, Academic Press, 1974
    [2.11] K. Hardtl, Ferroelectrics, 12,9(1976)
    [2.12] J. Biggers and W. Schulze, Bull. Am.Ceram. Soc., 53, 809(1974)
    [2.13] G. Haertling and C. Land, Ferroelectrics, 3, 269(1972)
    [2.14] J. Thomson, Jr., Bull. Am. Ceram. Soc., 53,421(1974)
    [2.15] M. Murata, K. Wakino, K. Tanaka and Hamakawa, Mat. Res. Bull., 11,323(1976)
    [2.16] Z.W. Yin, Ferroelectrics, 35,[6](1981)
    [2.17] G. Haertling, “Processing of Tramsparent Electrooptic Ceramics,” Microstructure and properties of Ceramic Materials, 88-98, Science Press, China, 1984
    [2.18] J. Pottharst and H. Schichl, Ferroelectrics, 10, 191(1976)
    [2.19] H. Adachi and K. Wasa, “Sputtering Preparation of Ferroelectric PLZT Thin Films and Their Optical Application,” IEEE Trans. Ultrasonics, Ferroelectrics and Frequency control, 38,[6]645-655(1991)
    [2.20] B.A. Tuttle and R.W. Schwartz, “Solution Deposition of Ferroelectric Thin Films,” MRS Bulletin, 20[6], 49(1996)
    [2.21] 陳三元, “強介電薄膜之液相化學法製作” 工業材料,108, 100(1995)
    [2.22] V.E. Wood, J.R. Busch, S.D. Ramamurthi and S.L. Swartz, “Guided-wave Optical Properties of Sol-gel Ferroelectric Films,” J. Appl. Phys. 71[9]4566(1992)
    [2.23] G. Teowee, S. Motakel, T. Bukowski, J. Boulton and D. Uj;,amm, “Optical Losses in Sol-gel Derived Lead Lanthanum Titanate Waveguides” Microelectric Engineering 29, 323-326(1995)
    [2.24] M. Shimizu, H. Fujisawa and T. Shiosaki, “MOCVD of Ferroelectric PLZT Thin Films and Their Properties,” Microelectric Engineering, 29, 173-176(1995)
    [2.25] M. Okuyama, T. Usuki and Y. Hamakawa, “Epitaxial Growth of Ferroelectric PLZT Thin Film and Their Optical Properties,” Appl. Phys.,21, 339-343(1980)
    [2.26] B. Jaber, D. Remiens, E. Cattan. and B. Thierry, “Optimisation of the Deposition and Annealing Parameters of Paraelectric PLZT(28/0/100) Thin Films Grown by RF Magnetron Sputtering,” Sensors & Actuators, A,51, 1-4(1995)
    [2.27] H. Adachi, T. Mitsuyu, O.Yamazaki and K. Wasa, “Ferroelectric(Pb,La)(Zr,Ti)O3Epitaxial Thin Films on Sapphire Grawn by RF-planar Magnetron Sputtering,” J. Appl. Phys. 60,(2), 736-741(1986)
    [2.28] S. Krishnakumar, V. Ozguz, C. Fan, C. Cozzolino, S. Esener and S. H. Lee, “Deposition and Characterization of Thin Ferroelectric Lead Lanthanum Zirconate Titanate (PLZT) Films on Sapphire for Spatial Light Modulators Applications” IEEE Trans. on Ultra., Ferroel., and Freq. Contr., 38,(6), 585-590(1991)
    [2.29] H. Adachi, T. Mitsuyu, O. Yamazaki and K.Wasa, “Preparation and Properties of (Pb,La) TiO3 Epitaxial Thin Films by Malti-Target Sputtering,” Japan. J. Appl. Phys., 24, Suppl. 24-3, 13-16(1985)
    [2.30] D. B Chrisey and G.K. Hubler, Pulsed Laser Deposition of Thin Films, John Wiley & Sons, 1994.
    [2.31] M. Gomes, E. Gomes, P.L. Mantas and J.L. Baptista, “Growth and Characterization of PLZT Films” Appl. Surface Science, 96-98, 779-783(1996)
    [2.32] M.J.M. Gomes “On the Preparation of PLZT Thin Films Grown by Pulsed Laser Deposition” Vacuum, 52, 61-66(1999)
    [2.33] H.F. Cheng, J.P. Wang, Y.C. Ling, T.F. Tseng, K.S. Liu and I.N. Lin “Influence of SrTiO3 or Pt Buffer Layer on the Formation of Perovskite Phase PLZT Films Prepared by Pulsed Laser Deposition “IEEE Trans. Ultrason., Ferroel., Freq. Contr., 431-434(1996)
    [2.34] H.F. Cheng, “Structure and Electrical Properties of Excimer Laser Deposited PLZT Thin Films” Appl. Surf. Sci., 92, 378-381(1996)
    [2.35] S.B. Xiong, Z.G. Liu and X.Y. Chen, “Highly (100) Textured Growth of Transparent PLT Ferroelectric Thin Films by Pulsed Laser Deposition,” Materials Latter, 25, 213-216(1995)
    [2.36] G. A. Petersen and J.R. McNeil, “Effect of Oxygen Partial Pressure on Lead Content of PLZT Thin Films Produced by Excimer Laser Deposition,” Thin Solid Films, 220, 87-91(1992)
    [2.37] X.D. Wu, T. Venkatesan, A.Inam and X.X. Xi, “Pulsed Laser Deposition of High Tc Superconducting Thin Films Present and Future, “Mat. Res. Soc. Symp. Proc., 191, 129-133(1990)
    [2.38] K.B. Erington and N.J. Ianno, “Thin Films of Uniform Thickness by Pulsed Laser Deposition,” Mat. Res. Soc. Symp. Proc., 191, 115-118(1990)
    [2.39] R.E. Muenchausen, K.M. Hubbard, S. Foltyn, R.C. Setler, N.S. Nogar and C. Jenkius, “Effects of Beam Parameters on Excimer Laser Deposition of YBa2 Cu3 O7-x,” Appl. Phys, Lett., 56,(6), 578-581(1990)
    [2.40] M. Ohring, The Materials Science of Thin Films Academic Press, 1992
    [2.41] W.D. Song, C.W.An, D.S. Lu, Y.C. Fan and Z.G. Li, “Deposition of Large Area YBa2Cu3 O7 Superconducting Films by Laser Scanning Ablation,” Appl. Phys. Lett., 63,(24), 3370-3373,(1993)
    [2.42] A.M.Rao and J.S. Moodera, “Pesign and Implementation of an Inexpensive Target Scanner for the Growth of Thin Films by the Laser Ablation Process,” Rev. Sci. Instrum. 62,(4), 1107-1111(1991)
    [2.43] D. B. Chrisey, J. S. Horwitz and K. S. Grabowski, “In-situ Growith of PZT Thin Films by Pulsed Laser Deposition”, Mat. Res. Soc. Symp. Proc., 191, 25-28(1990)
    [2.44] J.A.Greer, M.D. Tabat, C. Lu, “Future Trends for Large area Pulsed Laser Deposition,” Nuclear Instrum. And Meth. in Phys. Res., B, 121, 357-362(1997)
    [2.45] V. E. Wood, J. R. Busch, S. D. Ramamurthi, and S. L. Swartz, “Guided-wave optical properties of sol-gel ferroelectric films”, J. Appl. Phys., Vol. 71, No. 9, 4557, (1992).
    [2.46] C. M. Foster, G.-R. Bai, R. Csencsits, J. Vetrone, R. Jammy, L. A. Wills, E. Carr, and Jun Amano, “Single-crystal Pb(ZrxTi1-x)O3 thin films prepared by metal-organic chemical vapor deposition: Systemtic compositional variation of electronic and optical properties”, J. Appl. Phys., Vol. 81 No. 5, 2349, (1997).
    [2.47] L. H. Hamedi, M. Guilloux-Viry, A. Perrin, and M. H. Cherkani, “On the epitaxial growth of PZT films by pulsed laser deposition”, Ann. Chim. Sci. Mat., Vol. 23, 377, (1998).
    [2.48] D. Czekaj, M. J. M. Gomes, M. Vasilevskiy, M. Pereira, and M. P. Dos Santos, “Deposition of PZT thin film and determination of their optical properties”, J. European Ceramic Soc., Vol. 19, 1489, (1999).
    [2.49] M. P. Moret, M. A. C. Devillers, K. Worhoff, and P. K. Larsen, “Optical properties of PbTiO3, PbZrxTi1-xO3, and Pb ZrO3 films deposited by metal-organic chemical vapor deposition on SrTiO3”, J. Appl. Phys., Vol. 92, No. 1, 468, (2002).
    [2.50] T. Nakagawa, J. Yamaguchi, T. Usuki, Y. Matsui, M.Okuyama and Y. Hamakawa, Japan. J. Appl. Phys., 18, 896-900(1979)
    [2.51] 丁勝懋, “雷射工導論”中央圖書出版社, 43-48 (1986)
    [2.52] P. Graupner, J. C. Pommier, A. Cachard, and J. L. Coutaz, “Electro-optical effect in aluminum nitride waveguides”, J. Appl. Phys., Vol. 71, No. 9, 4136, (1992).
    [2.53] B. G. Potter, M. B. Sinclair, and D. Dimos, “Electro-optical characterization of Pb(Zr,Ti)O3 thin films by waveguide refractometry”, Appl. Phys. Lett., Vol. 63, No. 16, 2180, (1993).
    [2.54] B. G. Potter, M. B. Sinclair, D. Dimos, B. A. Tuttle, and R. W. Schwartz, “Electro-optical and optical evaluation of Pb(Zr,Ti)O3 thin films using waveguide refractometry”, J. of Non-Crystalline Solids, Vol. 178, 69, (1994).
    [2.55] S.B. Mansoor, A.A. Said, T.H. Wei, D.J. Hagan, and E.W. Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam”, IEEE J.Quantum Electronics, 2b, 4, 760-769 (1990)
    [2.56] Q.C. Zhao, Y. Liu, W.S. Shi, W. Ren, L.Y. Zhang, and X. Yao, “Nonlinear Optical Proerties of Lanthanum Doped Lead Titanate Thin Film Using Z-scan Technique”, Appl. Phys. Lett., 69(4), 22, 458-459 (1996)
    [2.57] W.F. Zhang, Y.B. Huang, and M.S. Zhang, “Optical Properties of Ferroelectric (Pb,La)(Zr,Ti)O3 Thin Films Grown by Pulsed Laser Deposition”, Appl. Surf. Sci., 158, 185-189 (2000)
    [2.58] T. Kawaguchi, H. Adachi, K. Setsune, O. Yamazaki and K. Wasa, “PLZT Thin Film Waveguides, “Appl. Opt., 23,[13], 2187-2191(1984)
    [2.59] K. Nashimto, S. Nakamura, T. Morikawa, H. Moriyama,and M. Watanabe, “Fabrication of Electrooptic PZT Heterostructure Waveguides on Nb-doped SrTiO3 by Solid-phase Epitaxy,” Appl. Phys. Lett., 74,[19], 2761-2763(1999)
    [2.60] K. Nashimoto, S. Nakamura, T. Morikawa, H. Moriyama and M. Watanabe, “Electrooptical Properties of Heterostructnre PLZT Wavegides on Nb-SrTiO3”, Jpn. J. Appl. Phys., 38, 5641-5645(1999)
    [2.61] K. Wasa, O. Yamazaki, H. Adachi, T. Kawaguchi and K. Setsune, “Optical TIR Switchs Using PLZT Thin Film Waveguidles on Sapphire,” IEEE J. Lightwave Tech., LT-2, 710-714(1984)
    [2.62]H. Higashino, T. Kawaguchi, H. Adachi, T. Makino and O. Yamazak, “High Speed Optical TIR Switchs using PLZT Thin Film Waveguides on Sapphire,” Jpn. J. Appl. Phys., Suppl., 24-2, 284-286(1985)
    [2.63]F. Wang and G. H. Haertling, “Large Electrooptic Modulation Using Ferroelectric Thin Films in a Fabry-Perot Cavity,” IEEE Trans. Ultrasonics, Ferro., Freq. Cont., 683-686(1995)
    [2.64]S.H. Lee, “Two-dimensional silicon/PLZT Spatial Light Modulator: Design Considerations and Technology”, Optical Engineering, 25, 250-260(1986)
    [2.65]D.Dimos, C. Land and R. Sohwartz, “Electrooptic Effects and Photosensitivities of PZT Thin Films,” Ceramic Transactions, 25, Ferroelectric Film, 323-39(1992)
    [2.66]S. Krishnakumar, V.H. Ozguz, C. Fan, C. Cozzolino, S. Esener and S.H. Lee “Deposition and Characterization of Thin Ferroelectric Lead Lanthanum Zirconate Titanate (PLZT)Films on Sapphire for Spatial Light Modulator Applications” IEEE Trans. Ultrasonics, Ferro., Freq. Contr., 38[6] , 585-590(1991)
    [2.67] 吳泰伯, “強介電薄膜在半導體記憶體上之應用與發展 ¾ 機會與挑戰,” 中國材料科學學會1996年度年會論文集,2, 155-159, (1997)
    [2.68] R. Moazzami, “Ferroelectric Thin Film Technology for Semiconductor Memory,” Semicord. Sci Technol., 10, 375-380(1995)
    [2.69] 陳銘森 “鎳酸鑭電極對鋯鈦酸鉛溶凝膠薄膜與特性影響之研究,” 清華大學,博士論文(1996)
    [2.70] R.E. Jones, Jr., P.D. Maniar, R. Moazzami, P. Zurcher, J.Z. Witowski, T.Y. Lii and S.J. Gillespie, “Ferroelectric Non-volatile Memories for Low-voltage, Low-power Applications,” Thin Solid Films, 270, 884-589(1995)
    [2.71] Y.M. Kang, J.K. Ku, and S. Baik, ”Crystallographic Characterization of Tetragonal (pb, La)TiO3 Eppitaxial Thin Films Grown by Pulsed Laser Deposition”, J. Appl. Phys. 78(4), 2601-2606 (1995)
    [3.1] H. Nishihara, M. Haruna, and T. Suhara, “Optical integrated circuits”, McGraw-Hill Book Company, (1989).
    [3.2] R. Syms and J. Cozens, “Optical guides waves and devices”, McGraw-Hill Book Company, (1992).
    [3.3] R. G. Hunsperger, “Integrated optics: Theory and technology”, Springer, (1995).
    [3.4] A. Kumar, D. F. Clark, and B. Culshaw, “Explanation of erros inherent in the effective-index method for analyzing rectangular-core waveguides”, Opt. Lett., Vol. 13, No. 12, 1129, (1988).
    [3.5] S. P. Pogossian, H. L. Gall, J. Gieraltowski, and J. Loaec, “Determination of the parameters of retangular dielectric waveguides by effective index methods”, J. of Modern Optics, Vol. 42, No. 2, 403, (1995).
    [3.6] G. R. Hadley and R. E. Smith, “Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions”, J. Lightwave Technol., Vol. 13, No. 3, 465, (1995).
    [3.7] G. H. Jin, J. Harari, L. Joannes, J. P. Vilot, and D. Decoster, “Numerical analysis of the radiation losses due to surface roughness in integrated optics devices”, IEEE Photonics Technol. Lett., Vol 8, No. 9, 1202, (1996).
    [3.8] T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides”, J. Lightwave Technol., Vol. 15, No. 11, 2107, (1997).
    [3.9] H. Deng, G. H. Jin, J. Harari, J. P. Vilcot, and D. Decoster, “Investigation of 3-D semicectorial finite-difference beam propagation method for bent waveguides”, J. Lightwave Technol., Vol. 16, No. 5, 915, (1998).
    [3.10] A. Driessen, H. J. W. M. Hoekstra, F. Horst, G. J. M. Krijnen, B. J. Offrein, J. B. P. V. Schoot, P. V. Lambeck, and Th. J. A. Popma, “All-optical integrated optics devices: A hybrid approach”, IEE Proc.-Optoelectron., Vol. 145, No. 4, 227, (1998).
    [3.11] P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films”, Appl. Phys. Lett., Vol 14, No. 9, 291, (1969).
    [3.12] P. K. Tien, “Light waves in thin films and integrated optics”, Appl. Opt., Vol 10, No. 11, 2395, (1971).
    [3.13] R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler”, Appl. Opt., Vol 12, No. 12, 2901, (1973).
    [3.14] D. J. Walter, “The syncang method for simultaneous measurement of film refractive index and thickness”, Thin Solid films, Vol 23, 153, (1974).
    [3.15] R. Th. Kersten, “A new method for measuring refractive index and thickness of liquid and deposited solid thin films”, Opt. Commun., Vol 13, No. 3, 327, (1975).
    [3.16] J. S. Wei and W. D. Westwood, “A new method for determining thin-film refractive index and thickness using guided optical waves”, Appl. Phys. Lett., Vol 32, No. 12, 819, (1978).
    [3.17] N. A. Paraire, N. Moresmau, S. Chen, P. Dansas, and F. Bertrand, “Direct measurement of substrate refractive indices and determination of layer indices in slab-guiding structures”, Appl. Opt., Vol 36, No. 12, 2545, (1997).
    [3.18] H. J. Lee, C. H. Henry, K. J. Orlowsky, R. F. Kazarinov, and T. Y. Kometani, "Refractive Index Dispersion of Phosphosilicate Glass, Thermal Oxide, and Silicon Nitride Films on Silicon", Appl. Opt., 27, 4104 (1988).
    [3.19] F. Agullo-Lopez, J. M. Cabrera, and F. Agullo-Rueda, “Electrooptics: Phenomena, materials and applications”, Academic Press, (1994).
    [3.20] C. G. Someda and G. Stegeman, “Anisotropic and nonlinear optical waveguides”, Elsevier, (1992).
    [3.21] F. Meseguer, J.C. Merle and M. Cardona, Ferroelectrics, 56, 95(1984)
    [3.22] G.F. Lipscomb, R.S. Narang and A.F. Carito, J. Chem. Phys.,75, 1509(1981)
    [3.23] H. NaKatami, W. Bosenberg, L.K.Cheng and C.L. Tang, Appl. Phys. Lett.,52, 1288(1988)
    [3.24] M.Aillerie, M.D. Fontana, F. Abdi, C. Carabatos, N. Theofanous and G. Alexakis, J. Appl. Phys. 65, 6(1989)
    [3.25] R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light, North-Holland, Amsterdam(1977)
    [3.26] M.lshida, H. Matsunami and T. Tanaka, “Electrooptic Effects of PLZT Thin Films,” Appl. Phys. Lett.,31, 433-434(1977)
    [3.27] K.D. Singer, M.G. Kuzyk, W. Holland, J. Sohn, S. Lalama and M.L. Schilling, Appl. Phys. Lett.,53, 1800(1989)
    [3.28] M.G. Kuzyk and C.W.Dirk, Appl.Phys. Lett. 54, 1628(1989)
    [3.29] H.Uchiki and T. Kobayashi, J. Appl. Phys., 64, 2625(1988)
    [3.30] T. Kobayashi, H. Uchiki and K.Minoshima, Nonlinear Optics of organics and Semiconductors, Springer Proceedings in Physics, 36, Springer-Verlag(1989)
    [3.31] J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film”, J. Phys. E: Sci. Instrum., Vol. 90, 1002, (1976).
    [3.32] R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon”, J. Phys. E: Sci. Instrum., Vol. 16, 1214, (1983).
    [3.33] H. P. Weber, F. A. Dunn, and W. N. Leibolt, “Loss measurements in thin-film optical waveguides”, Appl. Opt., Vol. 12, No. 4, 755, (1973).
    [3.34] Y. Okamura, S. Yoshinaka, and S. Yamamoto, “Measuring mode propagation losses of integrated optical waveguide: a simple method”, Appl. Opt., Vol. 22, No. 23, 3892, (1983).
    [3.35] A. F. Evans and D. G. Hall, “Propagation loss measurements in silicon-on insulator optical waveguides formed by bond-and –etchback process”, Appl. Phys. Lett., Vol 59, No. 14, 1667, (1991).
    [3.36] R. Adar, M. R. Serbin, and V. Mizrahi, “Less than 1dB per meter propagation loss of silica waveguides measured using a ring resonator”, J. Lightwave Technol., Vol 12, No. 8, 1369, (1994).
    [3.37] T. Feuchter and C. Thirstrup, “High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity”, IEEE Photonics Technol. Lett., Vol 6, No. 10, 1244, (1994).
    [3.38] J. W. Lee, C. S. Wang, S. Caracci, and D. M. Husband, “Optical loss in rod-like polymer thin films”, Polymer, Vol. 39, No. 13, 2765, (1998).
    [3.39] C.-T. Lee, “Nondestructive measurement of aeparated propagation loss for multimode waveguide”, Appl. Phys. Lett., Vol 73, No. 2, 133, (1998).
    [3.40] G. H. V. Rhodes, B. B. Goldberg, and M. S. Unlu, “Measurement of internal spatial modes and local propagation properties in optical waveguides”, Appl. Phys. Lett., Vol. 75, No. 16, 2368, (1999).
    [3.41] B. Saleh, and M.C. Teich, “Fundamentals of Dhotonics” John Wiley & Sons, Ins., 696-798, (1991).
    [3.42] A. Yariv, and D.C. Yeh, “Optical Waves in Crystals” John Wiley & Sons, Ins., 220-266, (1984).
    [3.43] 錢士雄, 王恭明, “非線性光學¾原理與進展” 復旦大學出版社, 106-126 (2001).
    [3.44] 彭江得 ”光電子技術基礎” 儒林圖書公司, 177-195 (1993).
    [3.45] 鍾維烈 “鐵電體物理學” 科學出版社, 547-563 (2000).
    [3.46] 丁勝懋 “雷射工程導論” 中央圖書供應社, 324-340, (1986).
    [4.1] T. C. Huang, “Surface Ultra-thin Film Characterization by Grazing-incidence Asymmetric Bragg Diffraction”, Advances in X-ray Analysis, 33, 91(1990)
    [4.2] T. C. Huang, M. F. Toney, S. Brennan and Z. Rek, “Analysis of Cobalt-doped Iron Oxide Thin Films by Synchrotron Radiation”, Thin Solid Films, 154, 439(1987)
    [5.1] S. Krishnakumar, V. Ozguz, C. Fan, C. Cozzolino, S. Esener and S. H. Lee, “Deposition and Characterization of Thin Ferroelectric Lead Lanthanum Zirconate Titanate (PLZT) Films on Sapphire for Spatial Light Modulators Applications” IEEE Trans. on Ultra., Ferroel., and Freq. Contr., 38,(6), 585-590(1991)
    [5.2] H.Adachi, T.Mitsuyu, O.Yamazaki and K.Wasa, “Ferroelectric PLZT Epitaxial Thin Films on Sapphire Grown by RF-planar Magnetron Sputtering” J. Appl. Phys., 60(2), 736-741(1986)
    [5.3] M.Okuyama, J.Usuki and Y.Mamakawa, “Epitaxial Growth of Ferroeleatric PLZT Thin Film and Their Optical Properties”, Appl. Phys., 21, 339-343(1980)
    [5.4] B. Jaber, D. Remiens, E. Cattan. and B. Thierry, “Optimisation of the Deposition and Annealing Parameters of Paraelectric PLZT(28/0/100) Thin Films Grown by RF Magnetron Sputtering,” Sensors & Actuators, A,51, 1-4(1995)
    [5.5] Y.M. Kang, and S. Baik, J. Mater. Res., 13, 995-999 (1998)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE