研究生: |
童凱煬 Tung, Kai-Yang |
---|---|
論文名稱: |
被動式微混合器之混合與流場分析 Mixing and hydrodynamic analysis in passive micromixers |
指導教授: |
楊鏡堂
Yang, Jing-Tang 陳榮順 Chen, Rong-Shun |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 149 |
中文關鍵詞: | 週期擾動式微混合器 、螢光共振能量轉移 、平面蜿蜒微混合器 、微粒子影像測速 、或然率函數 |
外文關鍵詞: | CDM, FRET, PSM, Micro-PIV, PDF |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主旨係經由系統性的數值模擬分析與實驗研究,深入探討實驗室已開發的週期擾動微混合器(circulation-disturbance micromixer, CDM)與平面蜿蜒微混合器(planar serpentine micromixer, PSM)兩種被動式微混合器在不同參數下所造成之混沌對流效應,並探討對於混合性能和流場結構的影響。
在CDM的研究中,兩種新的定量方法被用來分析混沌混合效果。在數值模擬上,結合粒子軌跡分析法與粒子幾何分布的概念來計算混合效率。不但可以得知粒子的均勻性,更可獲知粒子間分散的程度。在實驗分析上,使用螢光共振能量轉移法(fluorescence resonance energy transfer, FRET)可用來驗證CDM之混合效果與提供生化反應之量測。此外,利用共軛焦顯微鏡的特殊技術可觀察在流道上任一橫切面之混合現象。根據粒子軌跡分布法以及螢光能量共振轉移法的結果, CDM的混合效能的確優於斜角溝槽微混合器(SGM)。由實驗結果所求得的FRET因子指出CDM的混合長度(在六個週期之後即達到80%的混合效果)遠小於SGM。
在PSM分析中,本研究使用分子擴散效應的數值模擬與微粒子影像測速(□-PIV)之實驗量測研究液珠通過PSM其內部的混沌混合以及流場分析。PSM的設計概念是利用在蜿蜒流道中交替著不同的流道截面積大小使得液珠的形狀改變並產生非對稱渦流來增加液珠內流體之混合。在濃度模擬分析上,PSM(液珠長度100 □m)能增加混合指數使得混合效率在600 □m 時能達到約90 %。跟直流道相比,在相同Re數(Re = 2)下混合指數約增加八倍。當液珠通過PSM時,最大的渦度差會增加,使得再循環的強度增大,其混合效率愈好。渦度場的或然率函數(probability distribution function, PDF)分布分析顯示,較大的擾動會增加較大渦度所佔的比例而且也會增加液珠內的混合效率。
Adeosun, J. T. and Lawal, A., 2005, “Mass transfer enhancement in microchannel reactors by reorientation of fluid interfaces and stretching,” Sens. Actuators B, Vol. 110, pp. 101-111.
Adrian, R. J., 1991, “Particle-imaging techniques for experimental fluid mechanics,” Annual Review Fluid Mechanics, Vol. 23, pp.261-304.
Anna, S. L., Bontoux, N., and Stoneb, H. A., 2003, “Formation of dispersions using “flow focusing” in microchannels,” Applied Physics Letters, Vol. 82, pp. 364-366.
Antini, J. T., Cima, M. J., and Langer, R., 1999, “A controlled-release microchip,” Nature, Vol. 397, pp. 335-338.
Bakajin, O., Carlson, R., Chou, C. F., Chan, S. S., Gabel, C., Knight, J., Cox, T., and Austin, and R. H., 1998, “Solid-state sensor and actuator workshop,” Hilton Head Island, SC, pp. 116-119.
Beebe, D., Adrian, R. J., Olsen, M. G., Stremler, M. A., Aref, H., and Jo, B. H., 2001, “Passive mixing in microchannels: fabrication and flow experiments,” Mec. Ind., Vol. 2, pp. 343-348.
Born, M., and Wolf, E., 1997, “Principles of optics,” sixth edition, Cambridge University Press, Cambridge.
Brackbill, J. U., Kothe, D. B., and Zemach, C., 1992 “A continuum method for modeling surface tension,” J. Comp. Phys., Vol. 100, pp. 335-354.
Bringer, M. R., Gerdts, C. J., Song, H., Tice, J. D., and Ismagilov, R. F., 2004, “Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets,” Phil. Trans. R. Soc., London A, Vol. 362, pp. 1087-1104.
Burns, J. R. and Ramshaw, C., 2001, “The intensification of rapid reactions in multiphase systems,” Lab Chip, Vol. 1, pp. 10-15.
Bynum, M. A. and Gordon, G. B., 2004, “Hybridization enhancement using microfluidic planetary centrifugal mixing,” Anal. Chem., Vol. 76, pp. 7039- 7044.
Chang, S. and Cho, Y. H., 2005, “Static micromixers using alternating whirls and lamination,” J. Micromech. Microeng., Vol. 15, pp. 1397-1405.
Chang C. C. and Yang, R. J., 2007, “Electrokinetic mixing in microfluidic systems,” Microfluid Nanofluid, Vol. 3, pp. 501-525.
Chen J. K. and Yang R. J., 2007, “Electroosmotic flow mixing in zigzag microchannels,” Electrophoresis, Vol. 28, pp. 975–983.
Chiem, N. and Harrison, D., 1997, “Microchip-based capillary electrophoresis for immunoassays: analysis of monoclonal antibodies and theophylline,” Anal. Chem., Vol. 69, pp. 373-378.
Forster, T., 1948, “Zwischenmolekulare energiewanderung und fluoreszenz,” Annalen der Physik, Vol. 437, pp. 55-75.
Gelorme, J. D., Cox, R. J., and Gutierrez, S. A. R., 1989, “Photoresist composition and printed circuit boards and packages made therewith,” United States Patent, Patent Number 4882245.
Gooby, D., Angeli, P., and Gavriilidis, A., 2001, “Mixing characteristics of T-type microfluidic mixers,” J. Micromech. Microeng., Vol. 11, pp. 126-132.
Groisman, A., Enzelberger, M., and Quake, S. R., 2003, “Microfluidic memory and control devices,” Science, Vol. 300, pp. 955-958
Günther, A., Khan, S. A., Thalmann, M., Trachsel, F., and Jensen, K. F., 2004, “Transport and reaction in microscale segmented gas–liquid,” Lab Chip, Vol. 4, pp. 278-286.
Haxo, F. T., 1955, “Some biochemical aspects of fungal carotenoids,” Fortschr. Chem. org. Naturstoffe, Vol. 12, pp. 169-197.
He, M., Edgar, J. S., Jeffries, G. D. M., Lorenz, R. M., Shelby, J. P., and Chiu, D. P., 2005, “Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets,” Anal. Chem., Vol. 77, pp. 1539-1544.
Helman, J., and Hesselink, L., 1989, “Representation and display of vector field Topology in fluid flow data sets,” Computer, Vol. 22, pp. 27-36.
Hirt, C. W., and Nichols, B. D., 1981, “Volume of fluid (VOF) method for the dynamics of free boundaries,” J. Comp. Phys., Vol. 39, pp. 201-225.
Huang, X. C., Quesada, M. A., and Mathies, R. A., 1992, “DNA sequencing using capillary array electrophoresis,” Anal. Chem., Vol. 64, pp. 2149-2154.
Hwang, W. R., Jun, H. S., and Kwon, T. H., 2002, “Experiments on chaotic mixing in a screw channel flow,” AIChE. J., Vol. 48, pp. 1621-1630.
Inoue, S., and Spring, K.R., 1997, “Light sources and microscope image brightness,” Video Microscopy, Plenum, New York, pp. 125–130.
Ismagilov, R. F., Stroock, A. D., Kenis, P. J. A., and Whitesides, G., 2000, “Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels,” Applied Physics Letters, Vol. 76, pp. 17-24.
Jeon, M. K., Kim, J. H., Noh, J., Kim, S. H., Park, H. G., and Woo, S. I., 2005, “Design and characterization of a passive recycle micromixer,” J. Micromech. Microeng., Vol. 15, pp. 346-350.
Joanicot, M., and Ajdari, A., 2005, “Droplet control for microfluidics,” Science, Vol. 309, pp. 887-888.
Johnson, T. J., Ross, D., and Locascio, L. E., 2002, “Rapid microfluidic mixing,” Anal. Chem., Vol. 74, pp. 45-51.
Kamholz, A. E., Weigl, B. H., Finlayson, B. A., and Yager, P., 1999, “Quantitative analysis of molecular interaction in a microfluidic channel: the t-sensor,” Anal. Chem., Vol. 71, pp. 5340-5347.
Kamholz, A. E. and Yager, P., 2001, “Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels,” Biophysical Journal , vol. 80, pp.155-160.
Kim, D. S., Lee, S. H., Kwon, T. H., and Ahn, C. H., 2005, ”A serpentine laminating micromixer combining splitting/recombination and advection,” Lab Chip, Vol. 5, pp. 739-747.
Kim, D. S., Lee, S. W., Kwon, T. H., and Lee, S. S., 2004, “A barrier- embedded chaotic micromixer,” J. Micromech. Microeng., Vol. 14, pp. 798-805.
Kinoshita, H., Kaneda, S., Fujii, T., and Oshima, M., 2007, “Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV,” Lab chip, Vol. 7, pp. 338-346.
Kopp, M. U., De Mello, A. J., and Manz, A., 1998, “Chemical amplification: continuous-flow PCR on a chip,” Science, Vol. 280, pp. 1046-1048.
Kothe, D. B., Rider, W. J., Mosso, S. J., and Brock, J. S., 1996, “Volume tracking of interfaces having surface tension in two and three dimension,” Proc. 34th Aerospace Science Meeting Exhib, AIAA-96-0859, pp. 1-24.
Koutsiaris, A. G., Mathioulakis, D. S., and Tsangaris, S., 1999, “Microscope PIV for velocity-field measurement of particle suspensions flowing inside glass capillaries,” Measurement Science & Technology, Vol. 10, pp. 1037-1046.
Lakowicz, J. R., 1999, “Principles of fluorescence spectroscopy,” Second Edition, Kluwer Academic/Plenum Publishers, New York.
Lee C. Y., Lee, G. B., Fu, L. M., Lee K. H., and Yang, R. J., 2004, “Electrokinetically driven active micro-mixers utilizing zeta potential variation induced by field effect,” J. Micromech. Microeng., Vol. 14, pp. 1390-1398.
Lee, C. H., Hsiung, S. K., and Lee, G. B., 2007, “A tunable microflow focusing device utilizing controllable moving walls and its applications for formation of micro-droplets in liquids,” J. Micromech. Microeng., Vol. 17, pp. 1121–1129.
Lee., Y. K., Deval, J., Tabeling, P., and Ho, C. M., 2001, “Chaotic mixing in electrokinetically and pressure driven micro flows,” The 14th IEEE Workshop on MEMS, Interlaken, Switzerland, pp. 483.
Lien, K. Y., Liu, C. J., Lin, Y. C., Kuo, P. L. and Lee, G. B., 2008, “Extraction of genomic DNA and detection of single nucleotide polymorphism genotyping utilizing an integrated magnetic bead-based microfluidic platform,” Microfluid Nanofluid, DOI 10.1007/s10404-008-0337-x.
Link, D. R., Anna, S. L., Weitz, D. A., and Stone, H. A., 2004, “Geometrically mediated breakup of drops in microfluidic devices,” Physical Review Letters, Vol. 92, pp. 054503-1-054503-4.
Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref, H., and Beebe, D. J., 2000, “Passive mixing in a three-dimensional serpentine microchannel,” J. Microelectromechanical Systems, Vol. 9, pp. 190-197.
Lu, H. W., Bottausci, F., Fowler, J. D., Bertozzi, A. L., Meinhart, C., and Kim, C. J., 2008, “A study of EWOD-driven droplets by PIV investigation,” Lab chip, Vol. 8, pp. 456-461.
Lu, L. H., Ryu, K. S., and Liu, C., 2002, “A magnetic microstirrer and array for microfluidic mixing,” Journal of Microelectromechanical Systems, Vol. 11, no. 5, pp. 462-469.
Manz, A., Graber, N. and Widmer, H. M., 1990, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sensors and actuators, B1, Vol. 1, pp. 244-248.
Meinhart, C. D., Wereley, S. T., and Gray, M. H. B., 2000, “Volume illumination for two-dimensional particle image velocimetry,” Meas. Sci. Technol ., Vol. 11, pp. 809-814.
Meinhart, C. D., Wereley, S. T., and Santiago, J. G., 1999, “PIV measurements of a microchannel flow,” Experiments in Fluids, Vol. 27, pp. 414–419.
Mengeaud, V., Josserand, J., and Girault, H. H., 2002, “Mixing processes in a zigzag microchannel: finite element simulations and optical study,” Anal. Chem., Vol. 74, pp. 4279-4286.
Nguyen, N. T., Wu, Z., 2005, “Micromixers - a review,” J. Micromech. Microeng., Vol. 15, pp. R1-R16.
Nisisako, T., Torii, T., and Higuchi, T., 2002, “Droplet formation in a microchannel network,” Lab Chip, Vol. 2, pp. 24-26.
Paik, P., Pamula, V. K., Pollack, M. G., and Fair, R. B., 2003, “Electrowetting-based droplet mixers for microfluidic systems,” Lab Chip, Vol. 3, pp. 28-33.
Pollock, B. A., and Heim, R., 1999, “Using GFP in FRET-based applications,” Trends Cell Biol., Vol. 9, pp. 57-60.
Raynal, F., Plaza, F., Beuf, A., and Carrière, P., 2004, ”Study of a chaotic mixing system for DNA chip hybridization chambers,” Phys. Fluids, Vol. 16, No. 9, pp. 63-66.
Rider, W. J., and Kothe, D. B., 1995, “Stretching and tearing interface tracing methods,” Proc. 33rd Aerospace Science Meeting Exhib, AIAA-95-1717, pp. 1-11.
Santiago, J. G., Wereley, S. T., Meinhart, C. D., Beebe, D. J., and Adrian, R. J., 1998, “A particle image velocimetry system for microfluidics,” Experiments in Fluids, Vol. 25, pp. 316–319.
Sarrazin, F., Loubiere, K., Prat, L., Gourdon, C., Bonometti, T., and Magnaudet, J., 2006, “Experimental andnumerical study of droplets hydrodynamics in microchannels,” AIChE Journal, Vol. 52, No. 12, pp. 4061-4070.
Shannon, C. E., 1948, “The mathematical theory of communication bell,” Syst. Tech. J., Vol. 27, pp. 379-423.
Song, H., Bringer, M. R., Tice, J. D., Gerdts, C. J., and Ismagilov, R. F., 2003a, “Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels,” Appl. Phys. Lett., Vol. 83, pp. 4664-4666.
Song, H., Chen, D. L., and Ismagilov, R.F., 2006, “Reactions indroplets in microfluid channels,” Angewandate chemie-international edition, Vol. 45, pp. 7336-7356.
Song, H., Tice, J. D., and Ismagilov, R. F., 2003b, “A microfluidic system for controlling reaction networks in time,” Angew. Chem. Int. Ed., Vol. 42, pp. 768-772.
Stroock, A. D., Dertinger, S. K., Ajdari, A., Mezic, I., Stone, H. A., and Whitesides, G. M., 2002, “Chaotic mixer for microchannels,” Science, Vol. 295, pp. 647-651.
Stryer, L., 1978, “Fluorescence energy transfer as a spectroscopic ruler,” Annu Rev Biochem, Vol. 47, pp. 819-846.
Tan, Y., Fisher, J. S., Lee, A. I., Cristini, V., and Lee, A. P., 2004, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip, Vol. 4, pp. 292-298.
Terry, S. C., Jerman, J. H., Verpoorte, E., and Angell, J. B., 1979, “A gas chromatographic air analyzer fabricated on a silicone wafer,” IEEE Trans. Electron. Devices, Vol. ED-26, pp. 1880-1886.
Tice, J. D., Lyon, A. D., and Ismagilov, R. F., 2004, “Effects of viscosity on droplet formation and mixing in microfluidic channels,” Anal. Chim. Acta., Vol. 507, pp. 73-77.
Tice, J. D., Song, H., Lyon, A. D., and Ismagilov, R. F., 2003, “Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers,” Langmuir, Vol. 19, pp. 9127-9133.
Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A., and Weitz, D. A., 2005, "Monodisperse double emulsions generated from a microcapillary device," Science, Vol. 308, pp. 537-541.
Vivek, V., Zeng, Y., and Kim, E. S., January 23-27, 2000, “Novel acoustic-wave micromixer,” IEEE International Micro Electro Mechanical Systems Conference, Mayazaki, Japan, pp. 668-673.
Wang, H., Iovenitti, P., Harvey, E., and Masood, S., 2002, “Optimizing Layout of Obstacles for Enhanced Mixing in Microchannels,” Smart Materials & Structures, Vol. 11, pp. 662-667.
Wang, H., Iovenitti, P., Harvey, E., and Masood, S., 2003, “Numerical investigation of mixing in microchannels with patterned grooves,” J. Micromech. Microeng., Vol. 13, pp. 801-808.
Wang, L., and Yang, J. Y., 2006, “An overlapping criss-cross micromixer using chaotic mixing principles,” J. Micromech. Microeng., Vol. 16, pp. 2684-2691.
Ward, L. D., Shi, P. T., and Simpson, R. J., 1992, “Binding of anti-human-interleukin-6 monoclonal antibodies to synthetic peptides of human interleukin-6 studied using surface plasmon resonance,” Biochem. Int., Vol. 26, pp. 559-565.
Xia, H. M., Wan, S. Y. M., Shu, C., and Chew, Y. T., 2005, “Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers,” Lab Chip, Vol. 5, pp. 748-755.
Xu, J. H., Luo, G. S., Li, S. W., and Chen, G. G., 2006, “Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties,” Lab Chip, Vol. 6, pp. 131-136.
Yang, J. T., Huang, K. J., Tung, K. Y., and Fang, W. F., 2007, “Twin-vortex micromixer for enforced mass exchange,” US Patent Pub. No. 2007/0263485 A1.
Yang, J. T., Huang, K. J., and Lin, Y. C., 2005, “Geometric effects on fluid mixing in passive grooved micromixers,” Lab Chip, Vol. 5, pp. 1140–1147.
Yang, Z., Goto, H., Matsumoto, M., and Maeda, R., 2000, “Active micromixer for microfluidic systems using lead-zirconate (PZT)-generated ultrasonic vibration,” Electrophoresis, Vol. 21, pp. 116-119.
王克勤, 2001, 新型微混合器之設計與流場分析, 碩士論文, 國立成功大學機械工程學系。
王耀章, 2006, 不同流道嵌入物設計對流體混合效率影響之研究, 碩士論文, 大同大學機械工程學系(所)。
王儷霖, 2006, 交叉重疊式凹槽微混合器之設計與流場分析, 博士論文, 國立清華大學動力機械工程學系。
何家維, 2006, 整合無閥門壓電幫浦之脈衝式微混合器設計, 碩士論文, 臺灣大學應用力學研究所。
吳明至, 2005, 微懸臂梁感測器實驗數據分析及交流電場對反應面和微混合器之影響, 碩士論文, 臺灣大學應用力學研究所。
吳青峰, 2004, 渦流與注入流體位置對微型混合器效率之影響, 碩士論文, 國立成功大學機械工程學系。
吳咨亨, 2004, 無閥門壓電微幫浦與微混合器之整合設計, 碩士論文, 臺灣大學應用力學研究所。
吳崇義, 2002, 被動式微流體混合器之研發, 碩士論文, 國立成功大學工程科學系。
吳新雨, 2002, 生醫微流晶片應用之動電式微混合器設計,碩士論文, 國立清華大學動力機械工程學系。
吳慶國, 2005, 以溫度混合方式評估被動式微混合器性能之數值研究, 碩士論文, 國立臺灣海洋大學機械與機電工程學系。
李青峻, 2006, 以非穩態流場開發多功能微流體裝置之研究, 博士論文, 臺灣大學應用力學研究所。
李厚毅, 2006, 微型混合器之流場與混合效果分析研究, 碩士論文, 聖約翰科技大學自動化及機電整合研究所。
林文星, 2003, 微混合器之暫態流場計算與分析, 碩士論文, 國立成功大學機械工程學系。
林弈宏, 2004, 被動式微混合器之數值模擬, 碩士論文, 國立中央大學機械工程研究所。
林洸銓, 2004,主動式與被動式微混合器之最適化設計, 碩士論文,國立清華大學動力機械工程學系。
林國偉, 2006, 雙流體混合機制之數值模擬及實驗分析, 博士論文,國立清華大學動力機械工程學系。
姚良瑜, 1999, 微混合器內液體通道的研發, 碩士論文, 國立臺灣大學應用力學研究所。
洪御誌, 2007, 微轉子式微流體幫浦暨混合裝置, 碩文論文, 臺灣大學應用力學研究所。
洪啟琮, 2003, 電控微混流電泳系統之設計, 碩士論文, 逢甲大學自動控制工程所。
胡雅慧, 2004, 微混合器研製及混合效益檢測技術整合研究, 博士論文, 中原大學機械工程研究所。
宮春斐, 2002, 新型被動式微混合器之研發, 碩士論文, 國立臺灣大學應用力學研究所。
徐士傑, 2006, 電滲微混合器之動態模擬、最佳化設計與控制,碩士論文, 逢甲大學化學工程學所。
徐繼威, 2006, 離心式微流體U型混合器之模擬分析與實驗研究, 碩士論文, 中興大學機械工程學系所。
張家維, 2006, 旋轉碟片上胃型微混合器之模擬分析, 碩士論文, 中興大學機械工程學系所。
張智翔, 2006, 新型半主動式微型混合器之研發, 碩士論文, 臺灣大學機械工程學研究所。
許功亮, 2005, 微流體晶片之混合系統應用與焦耳熱分析, 碩士論文, 屏東科技大學車輛工程系。
許哲維, 2003, 微流體裝置之設計與製作 - 微致動器與微混合器,碩士論文, 大同大學機械工程研究所。
許哲維, 2003, 微流體裝置之設計與製作-微致動器與微混合器, 大同大學機械工程學系(所)。
許惠婷, 2004, 表面張力驅動之陣列式微型混合器之研製, 碩士論文, 國立清華大學工程與系統科學系。
陳建甫, 2001, 表面張力致動式微液體混合器之研發, 碩士論文, 國立臺灣大學應用力學研究。
陳建甫, 2007, 塑膠化之液相層析蛋白質與縮氨酸分析元件, 博士論文, 臺灣大學應用力學研究所。
陳啟科, 2007, 微流體振盪器研發與生物螢光法檢測, 博士論文, 國立清華大學動力機械工程學系。
曾德昌, 2004, 新型菱狀流道之微混合器設計與元件製作, 碩士論文, 國立成功大學機械工程學系。
黃科志, 2005, 週期擾動式微混合器之混合機制之研究, 博士論文,國立清華大學動力機械工程學系。
黃國修, 2005, 新型魚脊式微型混合器之研發, 碩士論文, 臺灣大學機械工程學研究所。
黃啟明, 2000, 微液體混合器的研發,碩士論文, 國立臺灣大學應用力學研究所。
黃閔忠, 2004, 微型混合器之設計與製作, 碩士論文, 屏東科技大學材料工程研究所
楊晴翔, 2005, 具凹槽或阻塊結構微混合器流場數值模擬, 碩士論文, 國立交通大學機械工程系所。
楊鏡堂, 童凱煬, 方偉峰, 黃科志, 2007, “具橫跨多邊壁面之連續溝槽之微混合器 (A Micromixer with Continuous Grooves across Adjacent Walls),” 中華民國發明專利第I 290483號
葉宗儒, 2004, 具圓形凹槽結構的微流道系統之流動特性探討及其在微混合器之應用, 碩士論文, 國立成功大學化學工程學系。
詹鈞翔, 2003, 微流道流體混合之主動控制實驗,碩士論文, 國立中興大學機械工程學系。
廖崇耀, 2006, 一種依擴散現象而設計之被動式微混合器, 碩士論文, 國立成功大學航空太空工程學系。
劉新平, 2007, 微渦漩混和器之研究, 碩士論文, 臺灣大學應用力學研究所。
厲復霖, 2006, 被動式微混合器三維傳輸現象之研究, 博士論文 , 國防大學中正理工學院/國防科學研究所。
蔡明峰, 2004, 數值模擬及微粒子影像速度儀於微混合器效能分析之應用, 碩士論文, 國立中山大學機械與機電工程學系研究所。
蔡惠菁, 2006, 奈/皮升級液珠之切割研究, 碩士論文, 國立清華大學動力機械工程學系。
蔡順興, 2002, 微混合器及微流體開關之設計與探討, 碩士論文, 國立中興大學機械工程學系。
黎康熙, 2005, 利用入口脈動流之主動式微混合器研究, 國立成功大學航空太空工程學系。
蕭任富, 2005, 具環流道震盪型微混合器之數值模擬, 碩士論文, 國立成功大學機械工程學系。
賴政佑, 2007, 生物感測器及微混合器之三維數值模擬研究, 碩士論文, 臺灣大學應用力學研究所
賴薏雯, 2003, 非線性電動渦流機制在微流體混合上的應用, 碩士論文, 國立中正大學化學研究所。
謝建文, 2000, 新型紫外光厚膜光阻合成暨類LIGA製程進行之微混合器製作研究, 碩士論文, 國立清華大學化學工程學系。
謝崇民, 2004, 凹槽結構管道微混合器流場分析, 碩士論文, 國立交通大學機械工程系所。
謝景揚, 2007, 主動式漸闊型微混合器之效能分析, 碩士論文, 國立臺灣科技大學機械工程系。
簡育生, 2004, 電驅動式微混合器及整合光鉗之細胞操控平台於生醫檢測之應用, 碩士論文, 國立中山大學機械與機電工程學系研究所。
魏廷穎, 2004, 新型微反應器之數值研究, 碩士論文, 國立成功大學機械工程學系。
蘇原達, 2005, 微混合器與U型注射系統之製作分析, 碩士論文, 屏東科技大學材料工程研究所。