研究生: |
徐帆 Fan Hsu |
---|---|
論文名稱: |
使用張量級數法設計量子系統的最佳追蹤控制 Optimal Tracking Control Design of Quantum Systems via Tensor Formal Power Series Method |
指導教授: |
陳博現
Bor-Sen Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 66 |
中文關鍵詞: | 最佳控制 、量子控制 、雙線性系統 |
外文關鍵詞: | optimal control, quantum control, bilinear system |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
量子系統的控制最早在1980年左右被提出來研究,而現在量子狀態的追蹤控制在改善通訊和計算上是很重要的課題。量子系統的動態方程式的描述是來自於 方程式,量子系統的狀態是波函數且含有機率的含意,而量子控制系統可視為是一個雙線性的控制系統。本篇論文旨在依據設計的需求來獲得量子追蹤系統的最佳控制解,並藉由求取偏微分方程式HJE的解來設計量子系統的最佳追蹤控制信號。由於雙線性系統的HJE不能表達成一個簡單完整的解,在此使用張量級數的技術來近似偏微分方程式HJE成一些Ricaati-like方程式,藉由求得那些Ricaati-like方程式的解來獲得HJE的近似解,並藉此來設計量子系統的近似最佳追蹤控制信號。在這篇論文中亦保含考慮量子系統含有隨機係數的擾動,而此擾動在量子控制系統中可視為是一個和狀態有關的雜訊項,而量子隨機系統的最佳追蹤控制的設計也是量子控制系統發展中的一個課題。最後,我們提出氫原子核的自旋 1/2 系統來作為此量子追蹤控制系統的設計示範,分別考慮使用單方向磁場和雙垂直方向的磁場控制,和含有隨機變化的系統控制這三個方面。藉由這三個例子的模擬結果之間的相互比較來討論使用此設計方法是否可行,以及對照不同情況時得到結果之間的差異來比較設計的優劣之處。
In this study, in order to specify quantum state to any desired state we need for the use of communication and computation, the quantum control system is formulated as a bilinear state space tracking system. An optimal tracking control is proposed to achieve state-tracking by solving the Hamilton-Jacobi equation (HJE). In order to avoid the difficulty in solving the HJE with a closed-form solution, the technique of formal tensor power series is employed to treat the partial differential equation HJE to obtain the optimal tracking control in quantum systems from the approximate perspective. If the quantum system suffers from stochastic parameter variations, it could be modeled as state-dependent noise. In this situation, stochastic optimal tracking control design is also developed for quantum systems. Finally, several examples are given to illustrate the design procedure and proposed method.
[1] T. J. Tarn, G. Huang and J. W. Clark, “Modelling of quantum mechanical control systems”, Math. Modelling, vol. 1, pp. 109-121, 1980.
[2] G. Huang, T. J. Tarn and J. W. Clark, “On the controllability of quantum mechanical systems”, J. Math. Phys., vol. 24, No. 11, pp. 2608-2618, 1983.
[3] C. K. Ong, G. Huang, T. J. tarn, and J. W. Clark, “Invertibility of quantum mechanical control systems”, Math. System Theory, vol. 17, pp. 335-350, 1984.
[4] A. P. Peirce, M. A. Dahleh, and H. Rabitz, “Optimal control of quamtum mechanical systems; Existence, numerical approximation and application”, Phys. Rev. A, vol. 37, pp. 4950-4964, 1988.
[5] M. A. Dahleh, A. Peirce, and H. Rabitz, “Optimal control of uncertain quamtum systems”, Phys. Rev. A, vol. 42, pp. 1065-1079, 1990.
[6] H. H. Rosenblock, “A stochastic variational treatment of quantum mechanics”, Proc. R. SOC. Lond. A, vol. 45, pp. 417-437, 1995.
[7] S. Shi, A. Woody, and H. Rabitz, “Optimal control of selective vilcrational excitation in harmonic chain molecules”, J. Chem. Phys., vol. 88, pp. 6870-6883, 1988.
[8] S. Grivopoulos and B. Bamieh, “Iterative algorithms for optimal control of quantum systems”, Proceeding of the 41st IEEE conference on Decision and control, Las Vegas, Nevada, pp. 2687-2690, 2002.
[9] R. S. Judson and H. Rabitz, “Teaching laser to control molecules”, Phys. Rev. Lett., vol. 68, pp. 1500-1503, 1992.
[10] V. Ramakrishna, M. V. Salapaka, M. A. Dahleh, H. Rabitz, and A. P. Peirce, “Controllability of molecular systems”, Phys. Rev. A, vol. 51, pp. 960-966, 1995.
[11] R. J. Gordon and S. A. Rice, “Active control of the dynamics of atoms and molecules”, Annu. Rev. Phys. Chem., vol. 48, pp. 601-641, 1997.
[12] D. D’ Alessardro, “On the controllability of systems on compact Lie groups and quantum mechanical systems”, J. Math. Phys., vol. 42, pp. 4488-4496, 2001.
[13] G. Turinici and H. Rabitz, “Quantum wave function controllability”, Chem. Phys., vol. 267, pp. 1-9, 2001.
[14] S. Shirmer, J. V. Leahy, and A. I. Solomon, “Degree of controllability for quantum systems and applications to atomic systems”, J. Phys. , vol. 35, pp. 4125-4144, 2002.
[15] Y. Yamamoto, N. Imoto, and S. Machida, “Amplitude squeezing in a semiconductor laser using quantum nondemolition measurement and negative feedback”, Phys., Rev. A, vol. 33, pp. 3243-3261, 1986.
[16] H. A. Haus and Y. Yamamoto, “Theory of feedback-generated squeezed states”, Phys. Rev. A., vol. 34, pp. 270-297, 1986.
[17] J. H. Shapiro et al., “Theory of light detection in the presence of feedback”, J. Opt. Soc. Am. B, vol. 4, p. 1604-1620, 1987.
[18] M. Yanagisawa and H. Kimura, “Transfer function approach to quantum control part I: Dynamics of quantum feedback systems”, IEEE Trans. Automatic Control, vol. 48, No. 12, pp. 2107-2120, 2003.
[19] M. Yanagisawa and H. Kimura, “Transfer function approach to quantum control part II: Control concept and applications”, IEEE Trans. Automatic Control, vol. 48, No. 12, pp. 2121-2132, 2003.
[20] J. Dalibard, Y. Cartin, and K. Molmer, “Wave-function approach to dissipative processed in quantum optics”, Phys. Rev. Lett., vol. 68, pp. 580-583, 1992.
[21] C. W. Gardiner, A. S. Parkins, and P. Zoller, “Wave function quantum stochastic differential equations and quantum jump simulation method”, Phys. Rev. A., vol. 46, pp. 4363-4381, 1992.
[22] H. J. Carmichael, “Quantum trajectory theory for cascaded open systems”, Phys. Rev. Lett., vol. 70, pp. 2273-2276, 1993.
[23] H. M. Wiseman, “Quantum theory of continuous feedback”, Phys. Rev. A., vol. 49, pp. 2133–2150, 1994.
[24] A. C. Doherty, S. Halil, K. Jacols, H. Mabuchi, and A. M. Tan, “Quantum feedback control and classical control theory”, Phys. Rev. A, vol. 62, pp. 012105, 2000.
[25] E. Merzbacher, ”Quantum mechanics”, 3rd edition, Wiley, New York, 1998.
[26] A.G. Butkovskii and Y.I. Samoilenko, “Control of Quantum-Mechanical Processes and Systems”, Kluwer Academic, Dordrecht, 1990.
[27] D. D'Alessandro and M. Dahleh, “Optimal control of two-level quantum systems”, IEEE Transactions on Automatic Control, vol.46, No. 6, pp. 866-876, 2001.
[28] A. Ferrante, M. Pavon, and G. Raccanelli, “Driving the propagator of a spin system: a feedback approach.” In. Proc. of the 41st Conference on Decision and Control, pp. 46-50, Las Vegas, NV, December 2002.
[29] F. Ticozzi, A. Ferrante and M. Pavon, “Stability and Robustness in Quantum Coherent Control”, Proceedings of the Sixteenth International Symposium on MTNS, 2004.
[30] S. Grivopoulos and B. Bamieh, “Lyapunov-based control of quantum systems”, Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 434-438, 2003.
[31] M. Mirrahimi and P. Rouchon, “Trajectory tracking for quantum systems: a lyapounov approach”, Proceedings of the Sixteenth International Symposium on MTNS, 2004.
[32] S. P. Banks, “Control systems engineering”, Prentice-Hall, London, 1986.
[33]S. P. Banks, “Mathematical theories of nonlinear systems”, Prentice-Hall, London, 1986.
[34] B. S. Chen, S. Tenqchen, “H∞ control design in bilinear systems: a tensor formal series approach”, Systems Control & Letters, vol. 23, pp. 15-26, 1994.
[35] G. Chen, G. Chen and S.H. Hsu, “Linear Stochastic Control Systems", CRC Press, London, 1995.
[36] B. S. Chen and W. Zhang, “Stochastic control with state dependent noise”, IEEE Trans. Automatic Control, vol. 49, No.1, pp. 45-57, 2004.