簡易檢索 / 詳目顯示

研究生: 顏銘輝
Yan, Ming Hui
論文名稱: 砷對金屬感應轉錄因子蛋白質分布及小泛素修飾之影響
Effects of arsenic treatment on the cellular localization and SUMOylation of MTF-1
指導教授: 林立元
Lin, Lin Yuan
口試委員: 李易展
Lee, Yi Jang
趙政漢
Chao, Cheng Han
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 56
中文關鍵詞: 金屬感應轉錄因子小泛素
外文關鍵詞: Arsenic, MTF-1, SUMO
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    金屬感應轉錄因子(MTF-1)受到重金屬刺激、環境逆境而活化。一般情況下大多數的金屬感應轉錄因子處於細胞質,而受到刺激時進入會細胞核並表現下游基因。轉譯後修飾作用可能影響蛋白質活性、細胞中分佈或蛋白質交互作用,然而不同的刺激可能影響不同的轉譯後修飾作用。金屬感應轉錄因子會受到小泛素修飾,鋅的刺激會使SUMO-1修飾程度下降。在本實驗中我們發現砷的刺激使金屬感應轉錄因子也使得小泛素修飾程度下降,並證明小泛素修飾位置也是在Lysine 627位置,小泛素修飾程度下降的情形會因為SIM序列突變而消失。我們也證明金屬感應轉錄因子受到砷刺激會有快速進入細胞核再由細胞核返回細胞質的情形,利用Lysine 627突變證明修飾的小泛素並不影響此進出細胞核的情形,但影響下游基因的表現量;大量表現SENP2發現金屬感應轉錄因子受到砷刺激會與未知蛋白質進行交互作用,並且此未知蛋白會受到SUMO-3修飾,在相同情況下金屬感應轉錄因子受到砷刺激而離開核情形消失,並且累積在細胞核中,累積在細胞核的現象也反應在金屬感應轉錄因子SIM序列的缺失時。我們發現砷刺激使金屬轉錄因子改變在細胞中的分布,並利用降低SUMO修飾程度來增加表現下游基因的表現量,其作用與鋅處理截然不同。


    Abstract
    Metal-responsive transcription factor 1 (MTF-1) mainly resided in the cytoplasm. Upon stimulation, it translocated into nucleus and activates gene expression. Post-translational modifications involved in different cellular processes, such as transcriptional regulation, nuclear-cytosolic transport, and protein-protein interaction. Previously, we observed that mouse MTF-1 can be modified by both SUMO-1 (small ubiquitin-like modifier 1) and SUMO-3 on lysine 627 residue. The level of sumoylation was reduced by zinc treatment in both dose- and time-dependent manners. Here we demonstrated that the level of sumoylation was also reduced by arsenic treatment. The reduced sumoylation level was depends on SUMO-interacting motif (SIM). Like SUMO-1,sumoylation sites of SUMO-3 also located in lysine 627 residue. SENP2 influenced the nuclear export of MTF-1. We also find that arsenic increased the transcription activity of K627R since the expression of downstream gene increased with the treatment. This phenomenon was different from that of zinc treatment.

    目錄 中文摘要-------------------------------------------------------------------------3 英文摘要-------------------------------------------------------------------------4 緒論-------------------------------------------------------------------------------5 材料與方法---------------------------------------------------------------------14 結果------------------------------------------------------------------------------21 討論------------------------------------------------------------------------------29 參考資料------------------------------------------------------------------------34 附圖------------------------------------------------------------------------------42

    參考文獻

    Anavi S, Hahn-Obercyger M, Madar Z, Tirosh O (2014) Mechanism for HIF-1 activation by cholesterol under normoxia: a redox signaling pathway for liver damage. Free radical biology & medicine 71: 61-69

    Anckar J, Hietakangas V, Denessiouk K, Thiele DJ, Johnson MS, Sistonen L (2006) Inhibition of DNA binding by differential sumoylation of heat shock factors. Molecular and cellular biology 26: 955-964

    Andrews GK (2000) Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochemical pharmacology 59: 95-104

    Bau DT, Wang TS, Chung CH, Wang AS, Wang AS, Jan KY (2002) Oxidative DNA adducts and DNA-protein cross-links are the major DNA lesions induced by arsenite. Environmental health perspectives 110 Suppl 5: 753-756

    Bertolero F, Pozzi G, Sabbioni E, Saffiotti U (1987) Cellular uptake and metabolic reduction of pentavalent to trivalent arsenic as determinants of cytotoxicity and morphological transformation. Carcinogenesis 8: 803-808

    Bohren KM, Nadkarni V, Song JH, Gabbay KH, Owerbach D (2004) A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. The Journal of biological chemistry 279: 27233-27238

    Brugnera E, Georgiev O, Radtke F, Heuchel R, Baker E, Sutherland GR, Schaffner W (1994) Cloning, chromosomal mapping and characterization of the human metal-regulatory transcription factor MTF-1. Nucleic acids research 22: 3167-3173

    Chalkiadaki A, Talianidis I (2005) SUMO-dependent compartmentalization in promyelocytic leukemia protein nuclear bodies prevents the access of LRH-1 to chromatin. Molecular and cellular biology 25: 5095-5105

    Chen A, Mannen H, Li SS (1998) Characterization of mouse ubiquitin-like SMT3A and SMT3B cDNAs and gene/pseudogenes. Biochemistry and molecular biology international 46: 1161-1174

    Chiu H, Ring BC, Sorrentino RP, Kalamarz M, Garza D, Govind S (2005) dUbc9 negatively regulates the Toll-NF-kappa B pathways in larval hematopoiesis and drosomycin activation in Drosophila. Developmental biology 288: 60-72

    Cramer M, Nagy I, Murphy BJ, Gassmann M, Hottiger MO, Georgiev O, Schaffner W (2005) NF-kappaB contributes to transcription of placenta growth factor and interacts with metal responsive transcription factor-1 in hypoxic human cells. Biological chemistry 386: 865-872

    Dalton TP, Li Q, Bittel D, Liang L, Andrews GK (1996) Oxidative stress activates metal-responsive transcription factor-1 binding activity. Occupancy in vivo of metal response elements in the metallothionein-I gene promoter. The Journal of biological chemistry 271: 26233-26241

    Desterro JM, Thomson J, Hay RT (1997) Ubch9 conjugates SUMO but not ubiquitin. FEBS letters 417: 297-300

    Di Bacco A, Ouyang J, Lee HY, Catic A, Ploegh H, Gill G (2006) The SUMO-specific protease SENP5 is required for cell division. Molecular and cellular biology 26: 4489-4498

    Epps JL, Tanda S (1998) The Drosophila semushi mutation blocks nuclear import of bicoid during embryogenesis. Current biology : CB 8: 1277-1280

    Fischer AB, Buchet JP, Lauwerys RR (1985) Arsenic uptake, cytotoxicity and detoxification studied in mammalian cells in culture. Archives of toxicology 57: 168-172

    Fowler BA, Woods JS (1979) The effects of prolonged oral arsenate exposure on liver mitochondria of mice: morphometric and biochemical studies. Toxicology and applied pharmacology 50: 177-187

    Fowler BA, Woods JS, Schiller CM (1979) Studies of hepatic mitochondrial structure and function: morphometric and biochemical evaluation of in vivo perturbation by arsenate. Laboratory investigation; a journal of technical methods and pathology 41: 313-320

    Fradet-Turcotte A, Brault K, Titolo S, Howley PM, Archambault J (2009) Characterization of papillomavirus E1 helicase mutants defective for interaction with the SUMO-conjugating enzyme Ubc9. Virology 395: 190-201

    Garzon J, Rodriguez-Munoz M, Vicente-Sanchez A, Garcia-Lopez MA, Martinez-Murillo R, Fischer T, Sanchez-Blazquez P (2011) SUMO-SIM interactions regulate the activity of RGSZ2 proteins. PloS one 6: e28557

    Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nature reviews Molecular cell biology 8: 947-956

    Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A, Cox J, Barton GJ, Mann M, Hay RT (2009) System-wide changes to SUMO modifications in response to heat shock. Science signaling 2: ra24

    Gong L, Kamitani T, Fujise K, Caskey LS, Yeh ET (1997) Preferential interaction of sentrin with a ubiquitin-conjugating enzyme, Ubc9. The Journal of biological chemistry 272: 28198-28201

    Gong L, Li B, Millas S, Yeh ET (1999) Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS letters 448: 185-189

    Gong L, Yeh ET (2006) Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. The Journal of biological chemistry 281: 15869-15877

    Gunes C, Heuchel R, Georgiev O, Muller KH, Lichtlen P, Bluthmann H, Marino S, Aguzzi A, Schaffner W (1998) Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1. The EMBO journal 17: 2846-2854

    Guo D, Li M, Zhang Y, Yang P, Eckenrode S, Hopkins D, Zheng W, Purohit S, Podolsky RH, Muir A, Wang J, Dong Z, Brusko T, Atkinson M, Pozzilli P, Zeidler A, Raffel LJ, Jacob CO, Park Y, Serrano-Rios M, Larrad MT, Zhang Z, Garchon HJ, Bach JF, Rotter JI, She JX, Wang CY (2004) A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nature genetics 36: 837-841

    Guo L, Lichten LA, Ryu MS, Liuzzi JP, Wang F, Cousins RJ (2010) STAT5-glucocorticoid receptor interaction and MTF-1 regulate the expression of ZnT2 (Slc30a2) in pancreatic acinar cells. Proceedings of the National Academy of Sciences of the United States of America 107: 2818-2823

    Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A, Hochstrasser M (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. The Journal of biological chemistry 280: 4102-4110

    He X, Ma Q (2009) Induction of metallothionein I by arsenic via metal-activated transcription factor 1: critical role of C-terminal cysteine residues in arsenic sensing. The Journal of biological chemistry 284: 12609-12621

    Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I (2006) Specification of SUMO1- and SUMO2-interacting motifs. The Journal of biological chemistry 281: 16117-16127

    Ishinishi N, Yamamoto A, Hisanaga A, Inamasu T (1983) Tumorigenicity of arsenic trioxide to the lung in Syrian golden hamsters by intermittent instillations. Cancer letters 21: 141-147

    Kagi JH, Schaffer A (1988) Biochemistry of metallothionein. Biochemistry 27: 8509-8515

    Kerscher O (2007) SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO reports 8: 550-555

    Li Y, Kimura T, Huyck RW, Laity JH, Andrews GK (2008) Zinc-induced formation of a coactivator complex containing the zinc-sensing transcription factor MTF-1, p300/CBP, and Sp1. Molecular and cellular biology 28: 4275-4284

    Lichtlen P, Wang Y, Belser T, Georgiev O, Certa U, Sack R, Schaffner W (2001) Target gene search for the metal-responsive transcription factor MTF-1. Nucleic acids research 29: 1514-1523

    Lin DY, Huang YS, Jeng JC, Kuo HY, Chang CC, Chao TT, Ho CC, Chen YC, Lin TP, Fang HI, Hung CC, Suen CS, Hwang MJ, Chang KS, Maul GG, Shih HM (2006) Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Molecular cell 24: 341-354

    Lin MC, Liu YC, Tam MF, Lu YJ, Hsieh YT, Lin LY (2012) PTEN interacts with metal-responsive transcription factor 1 and stimulates its transcriptional activity. The Biochemical journal 441: 367-377

    Liu B, Wang T, Mei W, Li D, Cai R, Zuo Y, Cheng J (2014) Small ubiquitin-like modifier (SUMO) protein-specific protease 1 de-SUMOylates Sharp-1 protein and controls adipocyte differentiation. The Journal of biological chemistry 289: 22358-22364

    Liu J, Liu Y, Goyer RA, Achanzar W, Waalkes MP (2000) Metallothionein-I/II null mice are more sensitive than wild-type mice to the hepatotoxic and nephrotoxic effects of chronic oral or injected inorganic arsenicals. Toxicological sciences : an official journal of the Society of Toxicology 55: 460-467

    Liu YC, Lin MC, Chen HC, Tam MF, Lin LY (2011) The role of small ubiquitin-like modifier-interacting motif in the assembly and regulation of metal-responsive transcription factor 1. The Journal of biological chemistry 286: 42818-42829

    Lukic Z, Goff SP, Campbell EM, Arriagada G (2013) Role of SUMO-1 and SUMO interacting motifs in rhesus TRIM5alpha-mediated restriction. Retrovirology 10: 10

    Melchior F (2000) SUMO--nonclassical ubiquitin. Annual review of cell and developmental biology 16: 591-626

    Miller WH, Jr., Schipper HM, Lee JS, Singer J, Waxman S (2002) Mechanisms of action of arsenic trioxide. Cancer research 62: 3893-3903

    Muller S, Matunis MJ, Dejean A (1998) Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. The EMBO journal 17: 61-70

    Murphy BJ, Kimura T, Sato BG, Shi Y, Andrews GK (2008) Metallothionein induction by hypoxia involves cooperative interactions between metal-responsive transcription factor-1 and hypoxia-inducible transcription factor-1alpha. Molecular cancer research : MCR 6: 483-490

    Navas-Acien A, Sharrett AR, Silbergeld EK, Schwartz BS, Nachman KE, Burke TA, Guallar E (2005) Arsenic exposure and cardiovascular disease: a systematic review of the epidemiologic evidence. American journal of epidemiology 162: 1037-1049

    Ogra Y, Suzuki K, Gong P, Otsuka F, Koizumi S (2001) Negative regulatory role of Sp1 in metal responsive element-mediated transcriptional activation. The Journal of biological chemistry 276: 16534-16539

    Owerbach D, McKay EM, Yeh ET, Gabbay KH, Bohren KM (2005) A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochemical and biophysical research communications 337: 517-520

    Rangasamy D, Woytek K, Khan SA, Wilson VG (2000) SUMO-1 modification of bovine papillomavirus E1 protein is required for intranuclear accumulation. The Journal of biological chemistry 275: 37999-38004

    Ross S, Best JL, Zon LI, Gill G (2002) SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Molecular cell 10: 831-842

    Sahin U, Ferhi O, Jeanne M, Benhenda S, Berthier C, Jollivet F, Niwa-Kawakita M, Faklaris O, Setterblad N, de The H, Lallemand-Breitenbach V (2014) Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. The Journal of cell biology 204: 931-945

    Saitoh H, Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. The Journal of biological chemistry 275: 6252-6258

    Santiago A, Li D, Zhao LY, Godsey A, Liao D (2013) p53 SUMOylation promotes its nuclear export by facilitating its release from the nuclear export receptor CRM1. Molecular biology of the cell 24: 2739-2752

    Saydam N, Adams TK, Steiner F, Schaffner W, Freedman JH (2002) Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1: identification of signal transduction cascades that control metal-inducible transcription. The Journal of biological chemistry 277: 20438-20445

    Shen LN, Geoffroy MC, Jaffray EG, Hay RT (2009) Characterization of SENP7, a SUMO-2/3-specific isopeptidase. The Biochemical journal 421: 223-230

    Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY, Zhu J, Tang W, Sun GL, Yang KQ, Chen Y, Zhou L, Fang ZW, Wang YT, Ma J, Zhang P, Zhang TD, Chen SJ, Chen Z, Wang ZY (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APE) .2. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 89: 3354-3360

    Stielow B, Sapetschnig A, Wink C, Kruger I, Suske G (2008) SUMO-modified Sp3 represses transcription by provoking local heterochromatic gene silencing. EMBO reports 9: 899-906

    Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH, Hay RT (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. The Journal of biological chemistry 276: 35368-35374

    Uenishi R, Gong P, Suzuki K, Koizumi S (2006) Cross talk of heat shock and heavy metal regulatory pathways. Biochemical and biophysical research communications 341: 1072-1077

    Wang K, Zhang XC (2014) Inhibition of SENP5 suppresses cell growth and promotes apoptosis in osteosarcoma cells. Experimental and therapeutic medicine 7: 1691-1695

    Wimmer U, Wang Y, Georgiev O, Schaffner W (2005) Two major branches of anti-cadmium defense in the mouse: MTF-1/metallothioneins and glutathione. Nucleic acids research 33: 5715-5727

    Xu J, He Y, Qiang B, Yuan J, Peng X, Pan XM (2008) A novel method for high accuracy sumoylation site prediction from protein sequences. BMC bioinformatics 9: 8

    Xu Z, Chan HY, Lam WL, Lam KH, Lam LS, Ng TB, Au SW (2009) SUMO proteases: redox regulation and biological consequences. Antioxidants & redox signaling 11: 1453-1484

    Yih LH, Lee TC (2003) Induction of C-anaphase and diplochromosome through dysregulation of spindle assembly checkpoint by sodium arsenite in human fibroblasts. Cancer research 63: 6680-6688

    Yu CW, Chen JH, Lin LY (1997) Metal-induced metallothionein gene expression can be inactivated by protein kinase C inhibitor. FEBS letters 420: 69-73

    Yun C, Wang Y, Mukhopadhyay D, Backlund P, Kolli N, Yergey A, Wilkinson KD, Dasso M (2008) Nucleolar protein B23/nucleophosmin regulates the vertebrate SUMO pathway through SENP3 and SENP5 proteases. The Journal of cell biology 183: 589-595

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE