研究生: |
陳藝夫 Chen, Yi-Fu |
---|---|
論文名稱: |
輪式倒單擺人型機器人之訊號融合與姿態控制 Sensor Fusion and Posture Control of a Wheeled Inverted Pendulum Humanoid Robot |
指導教授: |
葉廷仁
Yeh, Ting-Jen |
口試委員: |
顏炳郎
Yen, Ping-Lang 劉承賢 Liu, Cheng-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 感測融合 、強健平衡控制 、質心位置控制 、側傾控制 |
外文關鍵詞: | sensor fusion, robust balancing control, centroid control, roll control |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要發展輪式倒單擺機器人相關技術,包含訊號融合、 平衡控制與全身姿態控制。在訊號融合方面結合雙慣性感測器的量測資訊,提出新穎的俯仰角角度估測理論。此估測理論的主要目標為消除運動加速度對倒單擺機器人俯仰角估測的影響。在平衡控制方面,提出對倒單擺質心高度變化具強健性的控制理論。此控制理論的回授控制矩陣是透由對一系列線性矩陣不等式求解得到,使得Lyapunov穩定定理得以於線性變參數(LPV)模型實現。於全身姿態控制方面,提出兩種控制理論:質心位置控制理論與側傾控制理論。質心位置控制理論旨在使倒單擺機器人質心隨著參考質心位置軌跡移動同時維持身體姿態直立。質心位置控制器的設計是透過建構倒單擺機器人三連桿模型、關節角速度與質心速度之間的逆向微分運動學關係以及PI控制來達成。另一方面,側傾控制理論旨在調節倒單擺機器人的側傾角使其到達期望角度。側傾控制理論的設計同樣採用PI控制,並透過建構足以描述側傾角與雙足關節角度之間關係的倒單擺機器人五連桿模型來完成。最後將訊號融合與控制方法施加於本實驗室建構的輪式倒單擺人型機器人,並利用模擬與實作驗證上述理論的可行性。
This thesis aims to develop systematic methodologies to perform sensor fusion, balancing control, and whole-body posture control on a humanoid wheel inverted pendulum (WIP) robot. For sensor fusion, a novel pitch angle estimator is proposed by merging the measurements for two IMU’s. Such an estimator is meant to eliminate the error caused by motion acceleration when estimating the pitch angle for feedback purposes. For the balancing control, a controller that provides robust stability to the variations of the CoM height is proposed. Its feedback gain matrix is computed by solving a set of linear matrix inequalities so that Lyapunov stability can be achieved on a linear parameter varying (LPV) model. For the whole-body posture control, it contains two controllers: the centroid controller and the roll angle controller. The objective of the centroid controller is to make the centroid follow a reference command while keeping the robot body in an upright position. The centroid controller is PI-based and is designed by constructing a three-link model and inverting the differential kinematic relationship between the joint velocities and the centroid velocities. On the other hand, the roll angle controller is to regulate the robot’s roll angle. It is also PI-based and is designed using a five-link model that describes the kinematic relations between the roll angle and the joint angles of the legs. The sensor fusion and control methods are implemented on a humanoid WIP robot built in-house. Simulations and experiments are conducted to validate the feasibility of the proposed approaches.
[1] Honda Robotics. (2011). A bipedal humanoid robot. [Online]. Available: https://global.honda/innovation/robotics/ASIMO.html
[2] HITACHI Ltd. A human symbotic service robot safely supporting everyday life. [Online]. Available: https://www.hitachi.com/rd/research/mechanical/robotics/emiew2_01/index.html
[3] K. D. (2001). The segway personal transporter, the first self balancing, zero emissions personal transportation vehicle. [Online]. Available: http://www.segway.com/products/public-safety/segway-x2-se-patroller
[4] Y. Takahashi, N. Ishikawa, and T. Hagiwara, "Soft raising and lowering of front wheels for inverse pendulum control wheel chair robot," in Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453), 2003, vol. 4, pp. 3618-3623: IEEE.
[5] Y. Takahashi and M. Kohda, "Human riding experiments on soft front wheel raising of robotic wheelchair with inverse pendulum control," in 2005 IEEE International Conference on Industrial Technology, 2005, pp. 266-271: IEEE.
[6] T. Murakami and K. Sasaki, "A motion control for two‐wheel inverted pendulum type of mobile manipulator," IEEJ transactions on electrical and electronic engineering, vol. 4, no. 2, pp. 192-198, 2009.
[7] C. Acar and T. Murakami, "Multi-task control for dynamically balanced two-wheeled mobile manipulator through task-priority," in 2011 IEEE International Symposium on Industrial Electronics, 2011, pp. 2195-2200: IEEE.
[8] Y.-S. Ha, "Trajectory tracking control for navigation of the inverse pendulum type self-contained mobile robot," Robotics and autonomous systems, vol. 17, no. 1-2, pp. 65-80, 1996.
[9] F. Grasser, A. D'arrigo, S. Colombi, and A. C. Rufer, "JOE: a mobile, inverted pendulum," IEEE Transactions on industrial electronics, vol. 49, no. 1, pp. 107-114, 2002.
[10] K. Pathak, J. Franch, and S. K. Agrawal, "Velocity and position control of a wheeled inverted pendulum by partial feedback linearization," IEEE Transactions on robotics, vol. 21, no. 3, pp. 505-513, 2005.
[11] P. Bakaráč, M. Klaučo, and M. Fikar, "Comparison of inverted pendulum stabilization with PID, LQ, and MPC control," in 2018 Cybernetics & Informatics (K&I), 2018, pp. 1-6: IEEE.
[12] N. Dini and V. J. Majd, "Model predictive control of a wheeled inverted pendulum robot," in 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), 2015, pp. 152-157: IEEE.
[13] C.-F. Huang and T.-J. Yeh, "Anti slip balancing control for wheeled inverted pendulum vehicles," IEEE Transactions on Control Systems Technology, vol. 28, no. 3, pp. 1042-1049, 2019.
[14] 徐世金, "人型輪式倒單擺機器人之防打滑移動平衡控制," 清華大學動力機械工程學系學位論文, pp. 1-74, 2019.
[15] Boston Dynamics. (2017). Introducing Handle [Online]. Available: https://www.youtube.com/watch?v=-7xvqQeoA8c
[16] C. Zhang, T. Liu, S. Song, and M. Q.-H. Meng, "System Design and Balance Control of a Bipedal Leg-wheeled Robot," in 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2019, pp. 1869-1874: IEEE.
[17] V. Klemm et al., "LQR-Assisted Whole-Body Control of a Wheeled Bipedal Robot with Kinematic Loops," IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3745-3752, 2020.
[18] N. Hatakeyama and A. Shimada, "Movement control using zero dynamics of two-wheeled inverted pendulum robot," Transactions of the Society of Instrument and Control Engineers, vol. 44, no. 3, pp. 252-259, 2008.
[19] H. Goldstein, C. Poole, and J. Safko, "Classical mechanics," ed: American Association of Physics Teachers, 2002.
[20] M. Flannery, "The enigma of nonholonomic constraints," American Journal of Physics, vol. 73, no. 3, pp. 265-272, 2005.
[21] C.-F. Huang, B.-H. Dai, and T.-J. Yeh, "Observer-based sensor fusion for power-assist electric bicycles," in 2016 American Control Conference (ACC), 2016, pp. 5486-5491: IEEE.
[22] H. K. Khalil, Nonlinear control. Pearson Higher Ed, 2014, pp. 45-54.
[23] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press, 2008.