簡易檢索 / 詳目顯示

研究生: 陳禹豪
Chen, Yu-Hau
論文名稱: 生醫系統應用之三種模式的無線功率傳輸之接收器前端
A 3-mode Receiver Front End of Wireless Power Transfer in Biomedical Application
指導教授: 謝秉璇
Hsieh, Ping-Hsuan
口試委員: 劉怡君
Liu, Yi-Chun
彭盛裕
Peng, Sheng-Yu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 62
中文關鍵詞: 無線功率傳輸功率傳輸效率功率傳輸能力耦合係數
外文關鍵詞: Wireless power transfer, Power transfer efficiency, Power transfer capability, coupling factor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文主要在於設計無線功率傳輸(Wireless power transfer)系統的無線功率傳
    輸介面與接收端前端。在植入式電子設備的生醫應用中,磁耦合式無線傳輸介面
    的感應線圈不論在功率傳輸效率(Power transfer efficiency)或功率傳輸能力(Power transfer capability)都有非常關鍵的影響。因此我們在實際應用時的空間限制下,基於最大化功率效率的目標,以我們的設計程序來最佳化感應線圈。根據此組線圈在耦合係數(k)變異時對線圈負載的輸出功率分布,以改變整流器的輸入阻抗原
    理,設計三種不同模式的整流器,藉此提升耦合係數變異下的輸出功率,進一步
    達到在足夠的輸出功率條件下,能涵蓋更大範圍的耦合係數變異。
    我們設計與實作在0.18微米互補式金屬氧化物半導體製程,操作於13.56百
    萬赫茲的頻率。量測結果顯示整體效率在標準的耦合係數與重載100歐姆的條
    件下達到50.3%。對於足夠的輸出功率條件,三種模式的整流器使k的範圍延伸
    到0.092與0.02。相較於只有一種模式的整流器,在不調整傳輸端操作的前提下,
    輸出功率的k範圍可提升0.021,且在k等於0.073時負載範圍延伸到80Ω。


    A wireless power transfer system (WPT) system focused on wireless transmission interface and receiver front end is presented in this work. In our target application for implantable medical devices (IMDs), the weakly-coupled interface of resonant coupling WPT is the most critical block for two most important index: power transfer
    efficiency (PTE) and power transfer capability (PTC). In the proposed design, we optimize the geometric parameters of coupling coils through a reasonable procedure based on efficiency of coupling coils under practical IMDs spatial constraints. According to the output power distribution of the designed coils with respect to load, the proposed 3-mode rectifier is used to improve PTC and ensure sufficient output power for wider coupling variation. Active-diode topology is adopted for rectifier for maximizing efficiency under milliwatt power level.
    The WPT system operating at 13.56MHz includes off-chip resonant capacitors and coupling coils, fabricated in printed circuit boards (PCBs) and an on-chip 3-mode rectifier implemented in a 0.18 μm CMOS process. Measurement results shows that efficiency of total system from input of coupling coils to load of rectifier reaches 50.3% at k=0.073 and heavy load of 100 Ω. With proposed 3-mode rectifier, output DC power increases in both mode 2 and mode 3 for larger and smaller than k=0.073, respectively. Without adjusting the operation in transmitter, coupling factor extends to 0.092 and 0.02 for sufficient output power 14.4mW with 0.021 of k range improvement and load range extend to 80 Ω at k=0.073, compared with conventional receiver design with only one mode.

    中文摘要i Abstract ii Acknowledgement iii Contents iv List of Tables vi List of Figures vii 1 Introduction 1 1.1 Background 1 1.2 Motivation 4 1.3 System Overview 5 1.4 Thesis Overview 6 2 Magnetic Coupling-Based WPT Interface 8 2.1 Introduction to Coupling Coils 8 2.2 Equivalent Circuit Model 11 2.3 Power and Efficiency of Coupling Coils 13 2.4 Coupling Coils Design 16 2.5 Output Power under k Variation 23 3 Proposed 3-Mode Rectifier 26 3.1 Rectifier in WPT Systems 26 3.2 Mode 1 Receiver 26 3.2.1 Passive Rectifier 27 3.2.2 Active-Diode Rectifier 29 3.2.3 Common Gate-based Comparator 32 3.3 Mode 2 Receiver 34 3.4 Mode 3 Receiver 36 3.5 Overall 3-mode Receiver 39 4 Measurement Results 47 4.1 Introduction 47 4.2 Measurement of Coupling Coils 48 4.3 Measurement Result of Overall System 52 5 Conclusion 58 6 Bibliography 60

    [1] Balanis, Constantine A. Antenna theory: analysis and design. John wiley & sons, 2016.
    [2] C. Li et al., ”Overview of Recent Development on Wireless Sensing Circuits and Systems for Healthcare and Biomedical Applications,” in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 2, pp.
    165-177, June 2018.
    [3] F. -W. Chang and P. -H. Hsieh, ”A 13.56-MHz Wireless Power Transfer Transmitter with Impedance Compression Network for Biomedical Applications,”
    2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 2020, pp. 1-5.
    [4] C. Huang, T. Kawajiri and H. Ishikuro, ”A Near-Optimum 13.56 MHz CMOS Active Rectifier With Circuit-Delay Real-Time Calibrations for High-Current Biomedical Implants,” in IEEE Journal of Solid-State Circuits, vol. 51, no. 8, pp. 1797-1809, Aug. 2016.
    [5] X. Li, X. Meng, C. -Y. Tsui and W. -H. Ki, ”Reconfigurable Resonant Regulating Rectifier With Primary Equalization for Extended Coupling- and Loading-Range in Bio-Implant Wireless Power Transfer,” in IEEE Transactions on Biomedical Circuits and Systems, vol. 9, no. 6, pp. 875-884, Dec. 2015.
    [6] J. -H. Choi, S. -K. Yeo, S. Park, J. -S. Lee and G. -H. Cho, ”Resonant Regulating Rectifiers (3R) Operating for 6.78 MHz Resonant Wireless Power Transfer (RWPT),” in IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 2989-3001, Dec. 2013.
    [7] L. Cheng, W. -H. Ki and C. -Y. Tsui, ”A 6.78-MHz Single-Stage Wireless Power Receiver Using a 3-Mode Reconfigurable Resonant Regulating Rectifier,” in IEEE Journal of Solid-State Circuits, vol. 52, no. 5, pp. 1412-1423, May 2017.
    [8] M. W. Baker and R. Sarpeshkar, ”Feedback Analysis and Design of RF Power Links for Low-Power Bionic Systems,” in IEEE Transactions on Biomedical Circuits and Systems, vol. 1, no. 1, pp. 28-38, March 2007.
    [9] Y. Cheng et al., ”Modeling and optimization of single-turn printed coils for powering biomedical implants,” 2017 IEEE Wireless Power Transfer Conference (WPTC), Taipei, Taiwan, 2017, pp. 1-3.
    [10] M. A. Ghanad and C. Dehollain, ”A passive CMOS rectifier with leakage current control for medical implants,” 2012 19th IEEE International Conference on Electronics, Circuits, and Systems (ICECS 2012), Seville, Spain, 2012, pp.
    520-523.
    [11] S. Guo and H. Lee, ”An Efficiency-Enhanced Integrated CMOS Rectifier with Comparator-Controlled Switches for Transcutaneous Powered Implants,” 2007 IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 2007, pp. 385-388.
    [12] H. -M. Lee and M. Ghovanloo, ”An Adaptive Reconfigurable Active Voltage Doubler/Rectifier for Extended-Range Inductive Power Transmission,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 8, pp. 481-485, Aug. 2012.
    [13] Y. -C. Hsieh, C. -W. Chu, H. -W. Chang and C. -Y. Lin, ”Inductive Power Transfer Converter With Center-Tapped Pickup Winding,” in IEEE Transactions on Power Electronics, vol. 36, no. 11, pp. 12432-12439, Nov. 2021.
    [14] S. Liu, M. Liu, S. Yang, C. Ma and X. Zhu, ”A Novel Design Methodology for High-Efficiency Current-Mode and Voltage-Mode Class-E Power Amplifiers in Wireless Power Transfer systems,” in IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4514-4523, June 2017.
    [15] F. -B. Yang, J. Fuh, Y. -H. Li, M. Takamiya and P. -H. Chen, ”Structure-reconfigurable Power Amplifier (SR-PA) and 0X/1X Regulating Rectifier for Adaptive Power Control in Wireless Power Transfer System,” in IEEE Journal of Solid-State Circuits, vol. 56, no. 7, pp. 2054-2064, July 2021.

    QR CODE