研究生: |
王良瑋 Wang, Liang-Wei |
---|---|
論文名稱: |
利用快速升溫退火製備具[001]優選取向之序化鐵鉑薄膜與奈米粒子陣列之研究 Achieving [001]-orientated films and nanoparticle arrays of L10-FePt via rapid thermal annealing |
指導教授: | 賴志煌 |
口試委員: |
黃志青
Feng Yuan Ping 金重勳 薛富盛 唐敏注 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 139 |
中文關鍵詞: | 鐵鉑 、薄膜 、奈米粒子 、[001] 、垂直異向性 、應力 |
外文關鍵詞: | FePt, film, nanoparticle, [001], perpendicular anisotropy, stress |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
幾年來,硬碟已成為一項相當重要的資訊儲存裝置。因其具備高儲存容量及低成本的特性,硬碟已被廣泛應用於電腦裝置及雲端儲存上。為了進一步提升硬碟碟片的記錄密度,開發新材料是一項極為重要的工作。序化鐵鉑合金被認為極有潛力成為下世代超高密度垂直記錄媒體之記錄材料,因此本論文針對鐵鉑合金之優選取向及微觀結構的控制進行研究。
第一部分探討如何藉由快速升溫退火的步驟提升序化鐵鉑合金之[001]優選取向。經由快速升溫退火,我們成功在400度的退火溫度下,於二氧化矽/矽基板上製備出具有高度[001]優選取向之序化鐵鉑合金。由於矽與鐵鉑合金在吸收紅外光的能力上有極大的差別,當快速升溫退火系統中的紅外光照到試片上時,矽會像吸光層一般吸收大量的光並提升其溫度,進而產生較大的熱膨脹量而使鐵鉑薄膜感受到一張應力。隨著升溫速率提升,快速升溫退火系統產生的瞬間光強度也愈強,使得鐵鉑合金感受到一較大的張應力,此張應力能有效促進序化鐵鉑合金[001]優選取向的生成。此外,此張應力亦能透過二氧化矽的性質進行調變。若二氧化矽的結構較鬆散,則張應力可能會於二氧化矽層中釋放掉,以致於無法得到較佳的[001]優選取向之序化鐵鉑合金。
第二部分則是研究從鐵鉑薄膜製備鐵鉑奈米粒子的方法,並試圖降低其製備溫度。透過臨場穿透式電子顯微鏡的觀察,我們發現隨著溫度升高,鐵鉑薄膜會經由孔洞成核與成長的過程,最後演變成奈米粒子。這些孔洞的成核與成長會沿著初鍍膜狀態之晶界進行。因為此微觀結構的變化是經由原子擴散進行,因此添加低熔點之氧化硼至鐵鉑薄膜中能使孔洞成核與成長所需的溫度降低。此外,加快原子擴散亦能促進鐵鉑合金之序化。在最佳化矽吸光層的厚度後,我們能夠使具[001]優選取向之序化鐵鉑合金的形成溫度由350度降低至250度,而鐵鉑奈米粒子的形成溫度亦能由700度下降至500度。
第三部分著重於利用具有有序表面形貌之基板以製備規則排列之鐵鉑奈米粒子陣列。基板之表面形貌是透過高分子之微觀相分離來製備,可以得到規則六角排列之碳氧化矽奈米球陣列,其平均直徑與球之中心間距分別為25及40奈米。藉由控制鐵鉑薄膜之厚度與奈米球之氧電漿處理時間,能夠在高溫退火後製備出六角規則排列之鐵鉑奈米粒子陣列,其直徑約20奈米,並且其排列是由碳氧化矽奈米球決定。在經過一氧化碳與氨氣電漿處理後,一些較微小的多餘奈米粒子能夠被移除,最後可以得到一個幾近完美六角排列之鐵鉑奈米粒子陣列。
Hard disk drives (HDDs) are very important devices for mass data storage, which are widely used in computer systems and cloud storage due to their low cost and high capacity. The development of new materials for recording disks is necessary to further increase the areal density in next-generation magnetic recording media. This dissertation focuses on three main research topics to manipulate the orientation and microstructure of FePt alloys that is a promising candidate as ultrahigh-density perpendicular magnetic recording media.
The first topic investigates promotion of the [001]-oriented L10-FePt by rapid thermal annealing (RTA) with a light absorption layer. By using RTA at 400 °C, the highly [001]-oriented L10-FePt grown on SiO2||Si is achieved. Due to the dramatic divergence of the light absorption ability between Si and FePt films, Si behaves as a light absorption layer to absorb much more light emitted from the RTA system, which gives rise to the larger thermal expansion on Si and induces an in-plane tensile stress on FePt films. By raising heating rate during RTA, the transient light intensity is increased; therefore, a higher in-plane tensile stress is exerted on FePt films, which effectively suppresses the opening-up in in-plane hysteresis loops. Furthermore, the (001) texture of the L10-FePt is manipulated by densities of the SiO2 underlayer. The in-plane tensile stress generated during RTA may be released in a loose SiO2 layer, which leads to the worse [001] orientation of the L10-FePt as compared to FePt films on a dense SiO2 layer.
The second topic aims at developing L10-FePt nanoparticles (NPs) by thermal dewetting at reduced temperatures. Through in situ heating transmission electron micro-scope (TEM) analysis, the mechanism of the formation process of the L10-FePt NPs is investigated, which demonstrates a typical thermal dewetting process, or called agglom-eration, via holes nucleation and growth. The holes are observed to nucleate and grow along the initial grain boundaries in as-deposited films. Because the evolution of the holes progresses via surface diffusion of atoms, the dewetting process is accelerated at reduced temperatures by adding B2O3 into FePt films due to the low melting point and high diffusivity of B2O3. The accelerated atomic diffusion also enhances the ordering of the L10-FePt. After optimizing thicknesses of the Si light absorption layer, annealing temperatures for the formation of the L10-FePt and FePt NPs can be dramatically decreased from 350 °C to 250 °C and from 700 °C to 500 °C, respectively.
The third topic focuses on fabricating periodic FePt NP arrays via templated dewetting of FePt films on a topographic template. Hexagonal-packed SiOC spheres with an average diameter of 25 nm and an average center-to-center distance of 40 nm are obtained on a flat thermally oxidized Si substrate through microphase separation of the PS-PDMS BCP to be used as the topographic templates for templated dewetting. By manipulating thicknesses of FePt films and O2 treatment time of the PS-PDMS BCP, well-ordered FePt NP arrays with a hexagonal packing are fabricated on top of the SiOC spheres. The size of the FePt NPs is around 20 nm that is well confined by the SiOC spheres and the location of these NPs is defined by the SiOC spheres because of their exactly equal center-to-center distances. After treated by Co/NH3 plasma to remove the excess small islands in between the SiOC spheres, a nearly perfect hexagonal-packed FePt nanoparticle array is obtained.
1 D. Weller and A. Moser, “Thermal effect limits in ultrahigh-density magnetic record-ing”, IEEE Trans. on Mag. 35, 4423-4439 (1999).
2 O. A. Ovanov, L. V. Solina, and V. A. Demshina, Phys. Met. Metallogr. 35, 81 (1973).
3 H. Zeng, M. L. Yan, N. Powers, and D. J. Sellmyer, “Orientation-controlled nonepitaxial L10 CoPt and FePt films”, Appl. Phys. Lett. 80, 2350 (2002).
4 Y. C. Wu, L. W. Wang, and C. H. Lai, “Low-temperature ordering of (001) granular FePt films by inserting ultrathin SiO2 layers”, Appl. Phys. Lett. 91, 072502 (2007).
5 T. Narisawa, T. Hasegawa, S. Ishio, and H. Yamane, “[001]-oriented nonepitaxial growth in L10-ordered FePt thin film by SiO2 addition and rapid thermal annealing”, J. Appl. Phys. 109, 033918 (2011).
6 S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, “Monodisperse FePt Nanopar-ticles and Ferromagnetic FePt Nanocrystal Superlattices”, Science 287, 1989 (2000).
7 S. Sun, “Recent Advances in Chemical Synthesis, Self-Assembly, and Applications of FePt Nanoparticles”, Adv. Mater. 18, 393–403 (2006).
8 J. M. Qiu and J. P. Wang, “Monodispersed and highly ordered L10 FePt nanoparticles prepared in the gas phase”, Appl. Phys. Lett. 88, 192505 (2006).
9 J. M. Qiu and J. P. Wang, “Tuning the Crystal Structure and Magnetic Properties of FePt Nanomagnets”, Adv. Mater. 19, 1703–1706 (2007).
10 K. Sieradzki, K. Bailey, and T. L. Alford, “Agglomeration and percolation conductivity”, Appl. Phys. Lett. 79, 3401 (2001).
11 E. Jiran and C. V. Thompson, “Capillary instabilities in thin, continuous films”, Thin Solid Films 208, 23–28 (1992).
12 R. E. Hummel, R. T. DeHoff, S. Matts Goho, and W. M. Goho, “Thermal grooving, thermotransport and electrotransport in doped and undoped thin gold films”, Thin Solid Films 78, 1 (1981).
13 Y. C. Wu, L. W. Wang, C. H. Lai, and C. R. Chang, “Control of microstructure in (001)-orientated FePt–SiO2 granular films”, J. Appl. Phys. 103, 07E140 (2008).
14 Y. C. Wu, L. W. Wang, M. T. Rahman, and C. H. Lai, “Evolution of granular to partic-ulate structure of (001) FePt on amorphous substrates (invited)”, J. Appl. Phys. 103, 07E126 (2008).
15 Y. C. Wu, L. W. Wang, and C. H. Lai, “(001) FePt nanoparticles with ultrahigh density of 10 T dots/in.2 on amorphous SiO2 substrates”, Appl. Phys. Lett. 93, 242501 (2008).
16 L. W. Wang, Y. C. Wu, and C. H. Lai, “Ultrahigh-density (001)-oriented FePt nanopar-ticles by atomic-scale-multilayer deposition”, J Appl. Phys. 105, 07A713 (2009).
17 A. L. Giermann and C. V. Thompson, “Solid-state dewetting for ordered arrays of crystallographically oriented metal particles”, Appl. Phys. Lett. 86, 121903 (2005).
18 Y. J. Oh, C. A. Ross, Y. S. Jung, Y. Wang, and C. V. Thompson, “Cobalt Nanoparticle Arrays made by Templated Solid-State Dewetting”, small 5, 860–865 (2009).
19 Y. J. Oh, J. H. Kim, C.V. Thompson, and C. A. Ross, “Templated assembly of Co–Pt nanoparticles via thermal and laser-induced dewetting of bilayer metal films”, Nanoscale 5, 401 (2013).
20 C. C. Chao, T. C. Wang, R. M. Ho, P. Georgopanos, A. Avgeropoulos, and E. L. Thomas, “Robust Block CopolymerMask for Nanopatterning Polymer Films”, ACS Nano 4, 2088–2094 (2010).
21 C. C. Chao, R. M. Ho, P. Georgopanos, A. Avgeropoulos, and E. L. Thomas, “Silicon oxy carbide nanorings from polystyrene-b-polydimethylsiloxane diblock copolymer thin films”, Soft Matter 6, 3582–3587 (2010).
22 M. Hansen, “Constitution of Binary Alloys”, McGraw-Hill, New York (1958).
23 T. Klemmer, Y. Peng, X. Wu, and G. Ju, “Materials Processing for High Anisotropy L10 Granular Media” IEEE Trans. Magn., 45, 845–849 (2009).
24 D. Weller, A. Moser, L. Folks, M. E. Best, Wen Lee, M. F. Toney, M. Schwickert, J.-U. Thiele, and M. F. Doerner, “High Ku materials approach to 100 Gbits/in2”, IEEE Trans. Magn., 36, 10–15, (2000).
25 B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley Pub. Co. (1972).
26 L. D. Landau, E. M. Lifshitz, and L. P. Pitaevski, Electrodynamics of Continuous Me-dia, Elsevier (2004).
27 S. Okamoto, N. Kikuchi, O. Kitakami, T. Miyazaki, and Y. Shimada, “Chemi-cal-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films”, Phys. Rev. B, 66, 024413 (2002).
28 A. Cebollada, D. Weller, J. Sticht, G. R. Harp, R. F. C. Farrow, R. F. Marks, R. Savoy, and J. C. Scott, “Enhanced magneto-optical Kerr effect in spontaneously ordered FePt alloys: Quantitative agreement between theory and experiment”, Phys. Rev. B 50, 3419–3422 (1994)
29 J. P. Liu, C. P. Luo, Y. Liu, and D. J. Sellmyer, “High energy products in rapidly an-nealed nanoscale Fe/Pt multilayers”, J. Appl. Phys. 72, 26 (1998).
30 R. A. Ristau, K. Barmak, L. H. Lewis, K. R. Coffey, and J. K. Howard, “On the rela-tionship of high coercivity and L10 ordered phase in CoPt and FePt thin films”, J. Appl. Phys. 86, 4527 (1999).
31 R. F. C. Farrow, D. Weller, R. F. Marks, M. F. Toney, A. Cebollada, and G. R. Harp, “Control of the axis of chemical ordering and magnetic anisotropy in epitaxial FePt films”, J. Appl. Phys. 79, 15 (1996).
32 Z. R. Dai, Shouheng Sun, and Z. L. Wang, “Phase Transformation, Coalescence, and Twinning of Monodisperse FePt Nanocrystals”, Nano Lett. 1, 443–447 (2001).
33 T. Shima, K. Takanashi, Y. K. Takahashi, and K. Hono, “Preparation and magnetic properties of highly coercive FePt films”, Appl. Phys. Lett. 81, 1050 (2002).
34 C. P. Luo and D. J. Sellmyer, “Structural and magnetic properties of FePt:SiO2 granular thin films”, Appl. Phys. Lett. 75, 3162 (1999).
35 T. Maeda, T. Kai, A. Kikitsu, T. Nagase, and J. Akiyama, “Reduction of ordering tem-perature of an FePt-ordered alloy by addition of Cu”, Appl. Phys. Lett. 80, 2147 (2002).
36 C. L. Platt, K. W. Wierman, E. B. Svedberg, R. van de Veerdonk, J. K. Howard, A. G. Roy, and D. E. Laughlin “L10 ordering and microstructure of FePt thin films with Cu, Ag, and Au additive”, J. Appl. Phys. 92, 6104 (2002).
37 D. Ravelosona, C. Chappert, V. Mathet, and H. Bernas, “Chemical order induced by ion irradiation in FePt (001) films”, Appl. Phys. Lett. 76, 236 (2000).
38 C. H. Lai, C. H. Yang, and C. C. Chiang, “Ion-irradiation-induced direct ordering of L10 FePt phase”, Appl. Phys. Lett. 83, 4550 (2003).
39 U. Wiedwald, A. Klimmer, B. Kern, L. Han, H.-G. Boyen, P. Ziemann, and K. Fauth, “Lowering of the L10 ordering temperature of FePt nanoparticles by He+ ion irradiation”, Appl. Phys. Lett. 90, 062508 (2007).
40 Y. N. Hsu, S. Jeong, D. E. Laughlin, and D. N. Lambeth, “Effects of Ag underlayers on the microstructure and magnetic properties of epitaxial FePt thin films”, J. Appl. Phys. 89, 7068 (2001).
41 Y. Xu, J. S. Chen, and J. P. Wang, “In situ ordering of FePt thin films with face-centered-tetragonal (001) texture on Cr100−xRux underlayer at low substrate temperature”, Appl. Phys. Lett. 80, 3325 (2002).
42 J. S. Chen, B. C. Lim, and J. P. Wang, “Controlling the crystallographic orientation and the axis of magnetic anisotropy in L10 FePt films”, Appl. Phys. Lett. 81, 1848 (2002).
43 C. H. Lai, C. H. Yang, C. C. Chiang, T. Balaji, and T. K. Tseng, “Dynamic stress-induced low-temperature ordering of FePt”, Appl. Phys. Lett. 85, 4430 (2004).
44 C. C. Chiang, C. H. Lai, and Y. C. Wu, “Low-temperature ordering of L10 FePt by PtMn underlayer”, Appl. Phys. Lett. 88, 152508 (2006).
45 S. N. Hsiao, F. T. Yuan, H. W. Chang, H. W. Huang, S. K. Chen, and H. Y. Lee, “Effect of initial stress/strain state on order-disorder transformation of FePt thin films”, Appl. Phys. Lett. 94, 232505 (2009).
46 J. -U. Thiele, L. Folks, M. F. Toney, and D. K. Weller, “Perpendicular magnetic anisotropy and magnetic domain structure in sputtered epitaxial FePt (001) L10 films”, J. Appl. Phys. 84, 5686 (1998)
47 T. Shima, T. Moriguchi, S. Mitani, and K. Takanashi, “Low-temperature fabrication of L10 ordered FePt alloy by alternate monatomic layer deposition”, Appl. Phys. Lett. 80, 288 (2002).
48 T. Shima, K. Takanashi, Y. K. Takahashi, and K. Hono, “Coercivity exceeding 100kOe in epitaxially grown FePt sputtered films”, Appl. Phys. Lett. 85, 2571 (2004).
49 K. Barmak, J. Kim, L. H. Lewis, K. R. Coffey, M. F. Toney, A. J. Kellock, J.-U. Thiele, “On the relationship of magnetocrystalline anisotropy and stoichiometry in epitaxial L10 CoPt (001) and FePt (001) thin films”, J. Appl. Phys. 98, 033904 (2005).
50 Z. G. Zhang, K. Kang, and T. Suzuki, “FePt (001) texture development on an Fe–Ta–C magnetic soft underlayer with SiO2/MgO as an intermediate layer”, Appl. Phys. Lett. 83, 1785 (2003).
51 L. Zhang, Y.K. Takahashi, A. Perumal, K. Hono, “L10-ordered high coercivity (FePt)Ag–C granular thin films for perpendicular recording”, J. Magn. Magn. Mater. 320, 3036 (2008).
52 A. Perumal, L. Zhang, Y. K. Takahashi, and K. Hono, “FePtAg-C nanogranular films fabricated on a heat resistant glass substrate for perpendicular magnetic recording”, J. Appl. Phys. 108, 083907 (2010).
53 A. Perumal, Y. K. Takahashi, T. O. Seki, and K. Hono, “Particulate structure of L10 or-dered ultrathin FePt films for perpendicular recording”, Appl. Phys. Lett. 92, 132508 (2008).
54 F. Casoli, F. Albertini, L. Nasi, S. Fabbrici, R. Cabassi, F. Bolzoni, and C. Bocchi, “Strong coercivity reduction in perpendicular FePt/Fe bilayers due to hard/soft coupling”, Appl. Phys. Lett. 92, 142506 (2008).
55 J. S. Chen, Yingfan Xu, and J. P. Wang, “Effect of Pt buffer layer on structural and magnetic properties of FePt thin films”, J. Appl. Phys. 93, 1661 (2003).
56 J. S. Chen, B. C. Lim, J. F. Hu, B. Liu, G. M. Chow, and G. Ju, “Low temperature de-posited L10 FePt–C (001) films with high coercivity and small grain size”, Appl. Phys. Lett. 91, 132506 (2007).
57 J. S. Chen, B. C. Lim, J. F. Hu, Y. K. Lim, B. Liu, and G. M. Chow, “High coercivity L10 FePt films with perpendicular anisotropy deposited on glass substrate at reduced temperature”, Appl. Phys. Lett. 90, 042508 (2007).
58 Y. F. Ding, J. S. Chen, B. C. Lim, J. F. Hu, B. Liu, and G. Ju, “Granular L10 FePt:TiO2 (001) nanocomposite thin films with 5nm grains for high density magnetic recording”, Appl. Phys. Lett. 93, 032506 (2008).
59 G. R. Trichy, D. Chakraborti, J. Narayan, and J. T. Prater, “Structure-magnetic property correlations in the epitaxial FePt system”, Appl. Phys. Lett. 92, 102504 (2008).
60 H. H. Li, K. F. Dong, Y. G. Peng, G. Ju, G. M. Chow, and J. S. Chen, “High coercive FePt and FePt-SiNx(001) films with small grain size and narrow opening-up of in-plane hysteresis loop by TiN intermediate layer”, J. Appl. Phys. 110, 043911 (2011).
61 P. Ho, G. C. Han, K. H. He, G. M. Chow, and J. S. Chen, “(001) textured L10-FePt pseudo spin valve with TiN spacer”, Appl. Phys. Lett. 99, 252503 (2011).
62 C. C. Chiang, W. C. Tsai, L. W. Wang, H. C. Hou, J. W. Liao, H. J. Lin, F. H. Chang, B. J. Kirby, and C. H. Lai, “(001) FePt graded media with PtMn underlayers”, Appl. Phys. Lett. 99, 212504 (2011).
63 Y. C. Huang, J. C. Hsiao, I Y. Liu, L. W. Wang, J. W. Liao, and C. H. Lai, “Fabrication of FePt networks by porous anodic aluminum oxide”, J. Appl. Phys. 111, 07B923 (2012).
64 L. W. Wang, W. C. Shih, Y. C. Wu, and C. H. Lai, “Promotion of [001]-oriented L10-FePt by rapid thermal annealing with light absorption layer”, Appl. Phys. Lett. 101, 252403 (2012).
65 J. W. Liao, K. F. Huang, L. W. Wang, W. C. Tsai, W. C. Wen, C. C. Chiang, H. J. Lin, F. H. Chang, and C. H. Lai, “Highly (001)-oriented thin continuous L10 FePt film by intro-ducing an FeOx cap layer”, Appl. Phys. Lett. 102, 062420 (2013).
66 D. A. Gilbert, L. W. Wang, T. J. Klemmer, J. -U. Thiele, C. H. Lai, and K. Liu, “Tuning magnetic anisotropy in (001) oriented L10 (Fe1-xCux)55Pt45 films”, Appl. Phys. Lett. 102, 132406 (2013).
67 S. N. Hsiao, S. H. Liu, S. K. Chen, T. S. Chin, and H. Y. Lee, “Direct evidence for stress-induced (001) anisotropy of rapid-annealed FePt thin films”, Appl. Phys. Lett. 100, 261909 (2012).
68 M. L. Yan, N. Powers, and D. J. Sellmyer, “Highly oriented nonepitaxially grown L10 FePt films”, J. Appl. Phys. 93, 8292 (2003).
69 C. P. Luo, S. H. Liou, L. Gao, Y. Liu, and D. J. Sellmyer, “Nanostructured FePt:B2O3 thin films with perpendicular magnetic anisotropy”, Appl. Phys. Lett. 77, 2225 (2000).
70 K. Kang, Z. G. Zhang, C. Papusoi, and T. Suzuki, “Composite nanogranular films of FePt-MgO with (001) orientation onto glass substrates”, Appl. Phys. Lett. 84, 404 (2004).
71 C. V. Thompson, “Solid-State Dewetting of Thin Films”, Annu. Rev. Mater. Res. 42, 399–434 (2012).
72 S. -L. Zhang and M. Ostling, “Metal silicides in CMOS technology: past, present, and future trends”, Crit. Rev. Solid State Mater. Sci. 28, 1–129 (2003)
73 D. Deduytsche, C. Detavernier, R. L. Van Meirhaeghe, and C. Lavoie, “High-temperature degradation of NiSi films: Agglomeration versus NiSi2 nucleation”, J. Appl. Phys. 98, 033526 (2005).
74 C. Jahan, O. Faynot, L. Tosti, and J. M. Hartmann, “Agglomeration control during the selective epitaxial growthof Si raised sources and drains on ultra-thinsilicon-on-insulator substrates”, J. Cryst. Growth 280, 530–538 (2005).
75 B. Legrand, V. Agache, J. P. Nys, V. Senez, and D. Stievenard, “Formation of silicon islands on a silicon on insulator substrate upon thermal annealing”, Appl. Phys. Lett. 76, 3271 (2000).
76 P. R. Gadkari, A. P. Warren, R. M. Todi, R. V. Petrova, and K. R. Coffey, “Comparison of the agglomeration behavior of thin metallic films on SiO2”, J. Vac. Sci. Technol. A 23, 1152–1161 (2005).
77 J. Mizsei and V. Lanito, “In situ AFM, XRD and resistivity studies of the agglomeration of sputtered silver nanolayers”, J. Nanopart. Res. 3, 271–278 (2001).
78 Y. Kojima and T. Kato, “Nanoparticle formation in Au thin films by elec-tron-beam-induced dewetting”, Nanotechnology 19, 255605 (2008).
79 F. Spaepen, “Substrate curvature resulting from capillary forces of a liquid drop”, Mech. Phys. Solids 44, 675–681 (1996).
80 W. W. Mullins, “Theory of Thermal Grooving”, J. appl. Phys. 28, 333 (1957).
81 W. W. Mullins, “The effects of thermal grooving on grain boundary motion”, Acta Metall. 6, 414–427 (1958).
82 F. Y. Génin, W. W. Mullins, and P. Wynblatt, “CAPILLARY INSTABILITIES IN THIN FILMS: A MODEL OF THERMAL PITTING AT GRAIN BOUNDARY VERTICES”, Acta metall, mater. 40, 3239–3248 (1992).
83 F. Y. Génin, W. W. Mullins, and P. Wynblatt, “Capillary instabilities in polycrystalline metallic foils: experimental observations of thermal pitting in nickel”, Acta metall, mater. 42, 1489–1492 (1994).
84 D. J. Srolovitz and S. A. Safran, “Capillary instabilities in thin films. I. Energetics”, J. Appl. Phys. 60, 247 (1986).
85 D. J. Srolovitz and S. A. Safran, “Capillary instabilities in thin films. II. Kinetics”, J. Appl. Phys. 60, 255 (1986).
86 F. Y. Génin, W. W. Mullins, and P. Wynblatt, “THE EFFECT OF STRESS ON GRAIN BOUNDARY GROOVING”, Acta metall, mater. 41, 3541–3547 (1993).
87 C. Park, J. Yoon, and E. L. Thomas, “Enabling nanotechnology with self assembled block copolymer patterns”, Polymer 44, 6725–6760 (2003).
88 J. Y. Cheng, C. A. Ross, H. I. Smith, and E. L. Thomas, “Templated self-assembly of block copolymers: Top-down helps bottom-up”, Adv. Mater. 18, 2505– 2521 (2006).
89 H. C. Kim, S. M. Park, and W. D. Hinsberg, “Block Copolymer Based Nanostructures: Materials, Processes, and Applications to Electronics”, Chem. Rev. 110, 146–177 (2010).
90 F. S. Bates and G. H. Fredrickson, “Block Copolymers—Designer Soft Materials”, Phys. Today 52, 32 (1999).
91 J. K. Kim, S. Y. Yang, Y. Lee, and Y. Kim, “Functional nanomaterials based on block copolymer self-assembly”, Prog. Polym. Sci. 35, 1325–1349 (2010).
92 J. P., Yu Xuan, H. Wang, Y. Yang, B. Li, and Y. Han, “Solvent-induced microphase separation in diblock copolymer thin films with reversibly switchable morphology”, J. Chem. Phys. 120, 11163 (2004).
93 M. Park, C. Harrison, P. M. Chaikin, Richard A. Register, Douglas H. Adamson, “Block Copolymer Lithography: Periodic Arrays of ~1011 Holes in 1 Square Centimeter”, Science 276, 1401 (1997).
94 M. Park, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Large area dense na-noscale patterning of arbitrary surfaces”, Appl. Phys. Lett. 79, 257 (2001).
95 R. R. Li, P. D. Dapkus, M. E. Thompson, W. G. Jeong, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography”, Appl. Phys. Lett. 76, 1689 (2000).
96 R. Ruiz, H. Kang, F. A. Detcheverry, E. Dobisz, D. S. Kercher, T. R. Albrecht, J. J. de Pablo, and P. F. Nealey, “Density Multiplication and Improved Lithography by Directed Block Copolymer Assembly”, Science 321, 936 (2008).
97 J. Y. Cheng, C. A. Ross, V. Z. -H. Chan, E. L. Thomas, R. G. H. Lammerink, and G. J. Vancso, “Formation of a cobalt magnetic dot array via block copolymer lithography”, Adv. Mater. 13, 1174–1178 (2001).
98 K. Naito, H. Hieda, M. Sakurai, Y. Kamata, and K. Asakawa, “2.5-inch disk patterned media prepared by an artificially assisted self-assembling method”, IEEE Trans. Magn. 38, 1949–1951 (2002).
99 W. A. Lopes and H. M. Jaeger, “Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds”, Nature 414, 735–738 (2001).
100 S. B. Darling, N. A. Yufa, A. L. Cisse, S. D. Bader, and S. J. Sibener, “Self-organization of FePt nanoparticles on photochemically modified diblock copolymer templates”, Adv. Mater. 17, 2446–2450 (2005).
101 M. Bal, A. Ursache, M. T. Tuominen, J. T. Goldbach, and T. P. Russell, “Nanofabrica-tion of integrated magnetoelectronic devices using patterned self-assembled copolymer templates”, Appl. Phys. Lett. 81, 3479–3481 (2002).
102 J. I. Lee, S. H. Cho, S. M. Park, J. K. Kim, J. W. Yu, Y. C. Kim, and T. P. Russell, “Highly aligned ultrahigh density arrays of conducting polymer nanorods using block copolymer templates”, Nano Lett. 8, 2315–2320 (2008).
103 Y. Deng, T. Yu, Y. Wan, Y. Shi, Y. Meng, D. Gu, L. Zhang, Y. Huang, C. Liu, X. Wu, and D. Zhao, “Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene”, J. Am. Chem. Soc. 129, 1690–1697 (2007).
104 F. Kleitz, S. H. Choi, and R. Ryoo, “Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes”, Chem. Commun., 2136–2137 (2003).
105 M. Kruk, M. Jaroniec, C. H. Ko, and R. Ryoo, “Characterization of the porous struc-ture of SBA-15”, Chem. Mater. 12, 1961–1968 (2000).
106 Y. Meng, D. Gu, F. Zhang, Y. Shi, L. Cheng, D. Feng, Z. Wu, Z. Chen, Y. Wan, A. Stein, and D. Zhao, “A family of highly ordered mesoporous polymer resin and carbon struc-tures from organic–organic self-assembly”, Chem. Mater. 18, 4447–4464 (2006).
107 Y. Meng, D. Gu, F. Zhang, Y. Shi, H. Yang, Z. Li, C. Yu, B. Tu, and D. Zhao, “Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant tem-plating and direct transformation”, Angew. Chem. Int. Ed. 44, 7053–7059 (2005).
108 P. C. Kuo, S. C. Chen, Y. D. Yao, A. C. Sun, and C. C. Chiang, “Microstructure and magnetic properties of nanocomposite FePtCr–SiN thin films”, J. Appl. Phys. 91, 8638 (2002).
109 Q. Y. Yan, T. Y. Kim, A. Purkayastha, P. G. Ganesan, M. Shima, and G. Ramanath, “Enhanced chemical ordering and coercivity in FePt alloy nanoparticles by Sb-doping”, Adv. Mater. 17, 2233 (2005).
110 J. R. Goldman and J. A. Prybyla, “ULTRAFAST DYNAMICS OF LASER-EXCITED ELECTRON DISTRIBUTIONS IN SILICON”, Phys. Rev. Lett. 72, 1364 (1994).
111 O. W. Kading, H. Skurk, and K. E. Goodson, “THERMAL CONDUCTION IN METALLIZED SILICON-DIOXIDE LAYERS ON SILICON”, Appl. Phys. Lett. 65, 1629 (1994).
112 C. V. Thompson, R. Carel, “Stress and grain growth in thin films”, J. Mech. Phys. Solid 44, 657 (1996).
113 M. T. Le, Y. U. Sohn, J. W. Lim, and G. S. Choi, “Effect of Sputtering Power on the Nucleation and Growth of Cu Films Deposited by Magnetron Sputtering”, Mater. Trans. 51, 116-120 (2010).
114 P. Innocenzi, “Infrared spectroscopy of sol–gel derived silica-based films: a spec-tra-microstructure overview”, J. Non-Cryst. Solids 316, 309–319 (2003).
115 D. Hiller, R. Zierold, J. Bachmann, M. Alexe, Y. Yang, J. W. Gerlach, A. Stesmans, M. Jivanescu, U. Müller, J. Vogt, H. Hilmer, P. Löper, M. Künle, F. Munnik, K. Nielsch, and M. Zacharias, “Low temperature silicon dioxide by thermal atomic layer deposition: In-vestigation of material properties”, J. Appl. Phys. 107, 064314 (2010).
116 S Kang, Z. Jia, S. Shi, D. E. Nikles, and J. W. Harrell, “Easy axis alignment of chem-ically partially ordered FePt nanoparticles”, Appl. Phys. Lett. 86, 062503 (2005).
117 T. Shima, K. Takanashi, Y. K. Takahashi, and K. Hono, “Formation of octahedral FePt nanoparticles by alternate deposition of FePt and MgO”, Appl. Phys. Lett. 88, 063117 (2006).
118 Y. M. Chiang, D. P. Birnie III, and W. D. Kingery, Physics Ceramics (J. Wiley, New York, 1997), 357-358.
119 J.-S. Kim, Y.-M. Koo, and B.-J. Lee, “The origin of (001) texture evolution in FePt thin films on amorphous substrates”, J. Appl. Phys. 99, 053906 (2006).
120 N. W. Gong, M. Y. Lu, C. Y. Wang, Y. Chen, and L. J. Chen, “Au(Si)-filled -Ga2O3 nanotubes as wide range high temperature nanothermometers”, Appl. Phys. Lett. 92, 073101 (2008).
121 C. Y. Wang, N. W. Gong, and L. J. Chen, “High-Sensitivity Solid-State Pb(Core)/ZnO(Shell) Nanothermometers Fabricated by a Facile Galvanic Displacement Method”, Adv. Mater. 20, 4789–4792 (2008).
122 K. C. Chen, W. W Wu, C. N. Liao, L. J. Chen, and K. N. Tu, “Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper”, Science 321, 1066 (2008).
123 J. P. Chua, C. Y. Wang, L. J. Chen, and Q. Chen, “Annealing-induced amorphization in a sputtered glass-forming film: In-situ transmission electron microscopy observation”, Surf. Coat. Technol. 205, 2914–2918 (2011).
124 C. M. Müller and R. Spolenak, “Dewetting of Au and AuPt alloy films: A dewetting zone model”, J. Appl. Phys. 113, 094301 (2013).
125 B. D. Cullity, Elements of X-Ray Diffraction, Second Edition, Addison-Wesley Pub. Co. (1978).
126 Y. Tanaka, N. Kimura, K. Hono, K. Yasuda, and T. Sakurai, “Microstructures and magnetic properties of Fe-Pt permanent magnets”, J. Magn. Magn. Mater. 170, 287 (1997).
127 Y. K. Takahashi, M. Ohnuma, and K. Hono, “Ordering process of sputtered FePt films”, J. Appl. Phys. 93, 7580 (2003).
128 K. Kawai, S. Honda, M. Nawate, M. Komatsu, and K. Kawabata, “In situ observation of ordering process in FePt films during annealing in a transmission electron microscope”, J. Appl. Phys. 99, 123905 (2006).
129 J. H. An, “Thermal Stress Induced Voids in Nanoscale Copper Interconnects by In-situ TEM Heating”, The University of Texas at Austin. Materials Science and Engineering, Ph.D dissertation (2007)
130 W. C. Yang, M. Zeman, H. Ade, and R. J. Nemanich, “ttractive Migration and Coales-cence: A Significant Process in the Coarsening of TiSi2 Islands on the Si(111) Surface”, Phys. Rev. Lett. 90, 136102 (2003).
131 J. Chai, X. Liao, L. R. Giam, and C. A. Mirkin, “Nanoreactors for Studying Single Nanoparticle Coarsening”, J. Am. Chem. Soc. 134, 158−161 (2012).
132 A. R. S. Gautam and J. M. Howe, “In situ TEM study of Au–Cu alloy nanoparticle migration and coalescence”, J. Mater. Sci. 44, 601–607 (2009).
133 L. J. Lewis, P. Jensen, and J. L. Barrat, “”, Phys. Rev. B 56, 2248 (1997).
134 C. A. Ross, “PATTERNED MAGNETIC RECORDING MEDIA”, Annu. Rev. Mater. Res. 31, 203 (2001).
135 S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—A Route to Nanoscale Optical Devices”, Adv. Mater. (Weinheim, Ger.) 13, 1501 (2001).
136 S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromag-netic energy in metal/dielectric structures”, J. Appl. Phys. 98, 011101 (2005).
137 A. F. Koenderink, “Plasmon Nanoparticle Array Waveguides for Single Photon and Single Plasmon Sources”, Nano Lett. 9, 4228 (2009).
138 R. S. Wagner and W. C. Ellis, “VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH”, Appl. Phys. Lett. 4, 89 (1964).
139 K. M. Ryu, M. Y. Kang, Y. D. Kim, and H. T. Jeon, “Low-Temperature Growth of Carbon Nanotube by Plasma-Enhanced Chemical Vapor Deposition using Nickel Cata-lyst”, Jpn. J. Appl. Phys. 42, 3578 (2003).
140 K. A. Dick, K. Deppert, L. S. Karlsson, W. Seifert, L. R. Wallenberg, and L. Samuelson, “Position-Controlled Interconnected InAs Nanowire Networks”, Nano Lett. 6, 2842 (2006).
141 H. J. Fan, P. Werner, and M. Zacharias, “Semiconductor Nanowires: From Self-Organization to Patterned Growth”, small 2, 700–717 (2006).
142 R. G. Hobbs, N. Petkov, and J. D. Holmes, “Semiconductor Nanowire Fabrication by Bottom-Up and Top-Down Paradigms”, Chem. Mater. 24, 1975−1991 (2012).
143 Y. F. Guan, R. C. Pearce, A. V. Melechko, D. K. Hensley, M. L. Simpson and P. D. Rack, ” Pulsed laser dewetting of nickel catalyst for carbon nanofiber growth”, Nano-technology 19, 235604 (2008).
144 J. -Y. Kwon, T. -S. Yoon, K. -B. Kim, and S. -H. Min, “Comparison of the agglomera-tion behavior of Au and Cu films sputter deposited on silicon dioxide”, J. Appl. Phys. 93, 3270 (2003).
145 F. Silly and M. R. Castell, “Bimodal Growth of Au on SrTiO3(001)”, Phys. Rev. Lett. 96, 086104 (2006).
146 C. M. Müller and R. Spolenak, “Microstructure evolution during dewetting in thin Au films”, Acta Mater. 58, 6035–6045 (2010).
147 H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence on the thermal sta-bility of silver thin films”, Appl. Phys. Lett. 81, 4287 (2002).
148 K. Thürmer, E. D. Williams, and J. E. Reutt-Robey, “Dewetting dynamics of ultrathin silver films on Si(111)”, Phys. Rev. B 68, 155423 (2003).
149 H Krishna, R Sachan, J Strader, C Favazza, M Khenner, and R Kalyanaraman, “Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films”, Nano-technology 21, 155601 (2010).
150 S. -H Kwon, D. -H. Han, H. J. Choe, and J. -J. Lee, “Synthesis of copper nanoparticles by solid-state plasma-induced dewetting”, Nanotechnology 22, 245608 (2011).
151 D. Wang and P. Schaaf, “Nanoporous gold nanoparticles”, J. Mater. Chem. 22, 5344 (2012).
152 D. Wang, R. Ji, A. Albrecht, and P. Schaaf, “Ordered arrays of nanoporous gold nano-particles”, Beilstein J. Nanotechnol. 3, 651 (2012).
153 F. S. Bates, G. H. Fredrickson, “Block Copolymer Thermodynamics: Theory and Ex-periment”, Annu. Rev. Phys. Chem. 41, 525 (1990).
154 M. W. Matsen and M. Schick, “Stable and unstable phases of a diblock copolymer melt”, Phys. Rev. Lett. 72, 2660–2663 (1994).
155 V. Z. H. Chan, E. L. Thomas, V. L. Lee, R. D. Miller, A. Avgeropoulos, and N. Hadjichristidis, “Periodic porous and relief nanostructure articles”, U.S. Patent Publication No: WO/00/02090.
156 M. Brinkmann, V. Z. -H. Chan , and E. L. Thomas, “Room-Temperature Synthesis of a-SiO2 Thin Films by UV-Assisted Ozonolysis of a Polymer Precursor”, Chem. Mater. 13, 967–972 (2001).
157 Y. S. Jung, C. A. Ross, “Orientation-controlled self-assembled nanolithography using a polystyrene−polydimethylsiloxane block copolymer” Nano Lett. 7, 2046–2050 (2007).
158 Y. S. Jung, C. A. Ross, “Well-ordered thin-film nanopore arrays formed using a block-copolymer template”, Small 5, 1654–1659 (2009).
159 H. Wong, P. W. Voorhees, M. J. Miksis, and S. H. Davis, “Periodic mass shedding of a retracting solid film step”, Acta Mater. 48, 1719–1728 (2000).
160 G. Jin, J. L. Liu, S. G. Thomas, Y. H. Luo, K. L. Wang, and Bich-Yen Nguyen, “Con-trolled arrangement of self-organized Ge islands on patterned Si (001) substrates”, Appl. Phys. Lett. 75, 2752 (1999).
161 T. Kitajima, B. Liu, and S. R. Leone, “Two-dimensional periodic alignment of self-assembled Ge islands on patterned Si(001) surfaces”, Appl. Phys. Lett. 80, 497 (2002).
162 B. Yang, F. Liu, and M. G. Lagally, “Local Strain-Mediated Chemical Potential Con-trol of Quantum Dot Self-Organization in Heteroepitaxy”, Phys. Rev. Lett. 92, 025502 (2004).
163 Y. R. Chen, C. H. Kuan, Y. W. Suen, Y. H. Peng, P. S. Chen, C. H. Chao, E. Z. Liang, C. F. Lin, and H. C. Lo, “High-density one-dimensional well-aligned germanium quantum dots on a nanoridge array”, Appl. Phys. Lett. 93, 083101 (2008).
164 I. Bita, J. K. W. Yang, Y. S. Jung, C. A. Ross, E. L. Thomas, K. K. Berggren, “Graphoepitaxy of Self-Assembled Block Copolymers on Two-Dimensional Periodic Patterned Templates”, Science 321, 939-943 (2008).