簡易檢索 / 詳目顯示

研究生: 劉中吉
LIU TSUNG CHI
論文名稱: 具多參數的BRUSSELATOR模型解路徑之延拓
The Continuation of Solution Paths for The Brusselator Model with Multiple Parameters
指導教授: 簡國清
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2004
畢業學年度: 93
語文別: 中文
論文頁數: 84
中文關鍵詞: 轉彎點正則點隱函數定理有限差分法虛擬弧長延拓法牛頓迭代法
外文關鍵詞: bifurcation points, turning points, regular points, implicit function theorem, pseudo–arclength continuation method, Newton’s iterative method, central difference method
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們將探討Brusselator模型解路徑之延拓。我們運用有限差商法將模型離散,以及利用數值分析的方法,求得數學模型的轉彎點與正則點,並延拓出其整個解路徑,以探討模型的多重解的存在,有助於我們了解Brusselator模型方程在定性上的變化。本文中,我們使用隱函數定理、有限差分法、牛頓迭代法、割線預測法及虛擬弧長延拓法來找出我們Brusselator模型在有限邊界內之解路徑,並在解路徑中找出其轉彎點與正則點,運用適當的迭代法來分析並探討Brusselator模型解路徑的變化。


    In this thesis, we will investigate the continuation of solution paths for the Brusselator model. We ues the central difference method to investigate the multiple solution paths of the Brusselator model. Moreover, we investigate a Brusselator model to find solution paths containing bifurcation points, turning points and regular points of the Brusselator model. It will be helpful to understand the qualitative properties in the solutions of the Brusselator model.
    In this paper, we apply implicit function theorem, central difference method, Newton’s iterative method, secant predictor method, pseudo–arclength continuation method to find the solution paths of the Brusselator model. At the same time, we use numerical methods to find solution paths containing bifurcation points, turning points and regular points and use proper iterative methods to analysis and investigate the continuation of solution paths for the Brusselator model.

    目 錄 第一章 緒論………………………………………………………1 第二章 分歧理論與虛擬弧長延拓法……………………………4 2.1 分歧問題…………………………………………………4 2.2 隱函數定理與分歧理論…………………………………6 2.3 局部延拓法………………………………………………8 2.4 虛擬弧長延拓法…………………………………………10 第三章 BRUSSELATOR問題的數值方法 …………………………13 3.1 有限差商法 …………………………………………13 3.2 牛頓迭代法……………………………………………17 3.3 虛擬弧長延拓法………………………………………23 3.4 演算法…………………………………………………27 第四章 數值實驗 4.1 實驗4.1 …………………………………………………31 4.2 實驗4.2 …………………………………………………46 4.3 實驗4.3 …………………………………………………58 4.4 實驗4.4 …………………………………………………73 第五章 結論………………………………………………………84 參考文獻

    參考文獻
    [1] Aselone, P. M. and Moore, R. H., An Extension of the Newton-Kantorovich Method for Solving Nonlinear Equations with An Application to Elasticity, J. Math. Anal. 13, pp.476-501, 1966.
    [2] Allgower, E.L. and Chien,C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Compute, 7, 1265-1281,1986.
    [3] Choi, Y. S., Jen, K. C., (簡國清) and McKenna, P. J., The Structure of the Solution Set for Periodic Oscillations in a Suspension Bridge Model, IMA J. Appl. Math., 47, pp.283-306,1991.
    [4] Crandall, M. G., An Introduction to Constructive Aspects of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press, pp.1-35,1977.
    [5] Crandall, M. G., and Rabinowitz, P.H. Mathematical Theory of Bifurcation,Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C.and Bessis, D., NATO Advanced Study Institute Series,1979.
    [6] Jepson A.D. and Spence A., Numerical Methods for Bifurcation Problems, State of the Art in NUmeriacI Analysis, edit bu A, lserles, MJD Powell, 1987.
    [7] Kawada, T., and Hiral, A. Additional Mass Method – A New Approach to Suspension Bridge Rehabitation. Official Proceedings,2nd Annual International Bridge Conference. Engineers of Society of Western Pennsylvania,1985.
    [8] Keller, H. B. and Langford, W.F., Iterations, perturbations and multiplicities for nonlinear bifurcation problems,Arch. Rational Mech.Anal.,48,83-108,1972.
    [9] Keller, H. B., in “Recent Advances in Numerical Analysis”, Ed. by C. de Boor and G. H. Golub, Academic Press, New York, p.73, 1978.
    [10] Keller, H. B. Lectures on Numerical Methods in Bifurcation Problems,TATA Institute of Fundamental Research , Springer-Verlag,1987.
    [11] Kupper, T., Mittelmann, H. D. and Weber, H. (eds.), Numerical Methods for Bifurcation Problems, Birkhauser, Basel,1984.
    [12] Lazer, A. C., and McKenna, P. J. Large Scale Oscillatory Behaviour in loaded asymmetric systems. Ann. Inst. Henri Poincare: Analyse non Lin’eaire 4(3), pp.243-274,1987.
    [13] Lazer, A. C., and McKenna, P. J. A Symmetry Theorem and Applications to Nonlinear Partial Differential Equations. J. Diff. Eq. 72, pp.95-106,1988.
    [14] Lazer, A. C., and McKenna, P. J. Large Amplitude Periodic Oscillations in Suspension Bridge: Some New Connections with Nonlinear Analysis. SLAM Rev. 32, pp.537-578,1989.
    [15] McKenna P. j. and Walter W., Nonlinear Oscillations in a Suspension Bridge. Archive for Rational Mechanics and Analysis. 98(2), 167-177,1987.
    [16] McKenna P. j. and Walter W., On the Mulitiplicity of the Solution Set of Some Nonlinear Boundary Value Problems. Nonlinear Analysis 8, pp.893-907,1984.
    [17] Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from Simple EigenValues, Journal of Functional Analysis 8, pp.321-340,1971.
    [18] Michael G. Crandall and Paul H. Rabinowitz, Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by C. Bardos and D. Bessis, NATO Advanced Study Institute Series,1979.
    [19] Q-Heung Choi and Tacksun Jung, Periodic Solution of the Lazer-McKenna Suspension Bridge Equation, to be submitted , 1989.
    [20] Rheinboldt, W. C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp.221-237, 1980.
    [21] Rheinboldt, W. C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley,New York.
    [22] Wacker, H.(ed-), Continuation Methods, Academic Press, New York,1978.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE