研究生: |
蘇資傑 Su, Tzu-Chieh |
---|---|
論文名稱: |
形成兩種新型鍺烯在有氧化矽之銀(111)上 Growth of two new phases of Germanene on SiO2/Ag(111) |
指導教授: |
唐述中
Tang, Shu-Jung |
口試委員: |
鄭澄懋
Cheng, Cheng-Maw 林俊良 Lin, Chun-Liang Lin 徐瑋廷 Hsu, Wei-Ting |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 41 |
中文關鍵詞: | 鍺烯 、氧化矽 、銀單晶琢面 |
外文關鍵詞: | Germanene, Silicon oxidation, Ag crystal facets |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本次實驗旨在探索鍺烯在銀(111)上的生長多樣性。 根據先前的研究鉛原子能夠協助改變鍺烯的結構 。 在這次實驗中,我嘗試以矽原子替代鉛原子,透過蒸鍍形成薄膜在銀(111)的表面上。 我利用低能量電子繞射 (Low Energy Electron Diffraction; LEED) 和光電子能譜(Photoelectron spectroscopy; PES ) 研究薄膜的 晶體結構和材料原子鍵結 。 我反覆在 銀(111)上沉積矽烯,隨著沉積次數增加,我觀察到在清理後的表面形成了不同於銀(111)面的琢面( facets )。 在閱讀文獻和對比我的數據後,我認為這 可能是由於濺射槍的工作不穩定,導致活躍的矽原子無法有效地從銀表面清除。 在大量的矽原子與銀表面的作用,部分銀原子被矽原子替換,使矽原子鑽入銀表面,而擠出的大量銀原子在熱擾動下形成3D島嶼,這些島嶼的琢面為銀(100)。 此外還有少量的銀原子與後來沉積的矽原子形成合金停留在表面。 隨後樣品暴露在大氣中,鑽入表面的矽原子被氧化形成氧化矽,最 終形成了矽銀合金/銀3D島嶼/氧化矽在銀(111)上的複雜結構。接著我在有氧化矽的銀(111)表面上沉積鍺,意外地製造出兩種不同結構的鍺烯。 第一種與原本的QP鍺烯相比,繞射點更清晰,形成了三角形。 第二種與原本的QP鍺烯相比,繞射點分裂為兩點。兩種結構的繞射點清晰且明亮,表示鍺烯在銀(111)上有序生長。我使用LEED模擬解釋了兩種結構的晶格常數,並結合晶格重合(Higher-Order Coincident; HOC)的研究,繪製了晶格結構。 第一種結構的HOC為Ag(111)-(9 × 4√3)-Retanglur QP,其晶格常數為3.84 埃。第二種有三種可能性,三種晶格常數,三種與銀基底不同的重合點關係。
The aim of this experiment is to explore the diversity of germanene growth on Ag (111). Previous research has shown that Pb atoms can assist in altering the structure of germanene. In this experiment, I attempted to substitute Pb atoms with Si atoms, forming a film on the surface of Ag(111) through physical vapor deposition. I used Low Energy Electron Diffraction (LEED) and Photoelectron Spectroscopy (PES) to investigate the crystal structure and atomic bonding of the film. I repeatedly deposited Si on Ag(111), and with an increase in deposition and sputter cleaning cycles, I observed the formation of facets on the Ag surface, distinct from the Ag(111) plane. Upon reviewing literature and reviewing my data, I attribute this to the instability of the sputter gun, preventing active Si atoms from effectively being removed from the Ag surface. With the interaction of a large number of Si atoms and the Ag atoms in Ag(111) surface, some Ag atoms were replaced by Si atoms, causing Si atoms to penetrate the Ag surface. The expelled Ag atoms, under thermal agitation, formed 3D islands with various facets including Ag(100) and Ag(111). Additionally, a small amount of Ag atoms alloyed with later- deposited Si atoms remained on the surface. Subsequently, after exposure to the atmosphere, Si atoms embedded at the surface were oxidized, resulting in the formation of a Si-Ag alloy/Ag 3D islands/silicon oxides on Ag (111). Next, I deposited Ge on the silicon oxides/Ag (111) surface and unexpectedly produced two different and newly-observed structures of germanene. The first type of germanene, compared to the original QP germanene, exhibited clearer diffraction spots forming a triplet. The second type, compared to the original QP germanene, had diffraction spots split into two points. The clear and bright diffraction spots of both structures indicate the ordered growth of germanene on Ag (111). I used LEED simulation to explain the lattice constants of both structures and, in conjunction with Higher-Order Coincident (HOC) studies, derived the lattice structures. The HOC for the first structure is Ag(111) (9×4√3)-Retanglur QP and lattice constant is 3.84 ˚ A. The second structure has three possibilities.
[1] K.S.Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov. Electric field effect in atomically thin carbon films, Sci 306, 666 (2004).
[2] Hsin-yi Liu et al. , J. Chem. Phys. 153, 154707. (2020).
[3] A Acun et al. , J. Phys. Condens. Matter27, 443002 (2015).
[4] Ting-Yu Chen et al., Phys.Rev.Research 3, 033138 (2021)
[5] Chung-Huang Lin, Angus Huang, Woei Wu Pai, Wei-Chuan Chen, Ting- Yu Chen, Tay-Rong Chang, Ryu Yukawa, Cheng-Maw Cheng, Chung- Yu Mou, Iwao Matsuda, T.-C. Chiang, H.-T. Jeng, and S.-J. Tang, Phys.Rev.Materials.2., 024003 (2018)
[6] R. Arafune et al. , Surface Science 608 297–300 (2013)
[7] Johannes T Ku ̈chle et al. , 2D Mater. 9045021 (2022)
[8] Dmytro Solonenko et al., Phys. Status Solidi B, 1800432 (2018)
[9] S Colonna et al., Nanotechnology 32 152001 (2021)
[10] G. Ertl, J.Ku ̈ppers, ”Low Energy Electrons and Surface Chemistry,” ISBN 3- 527-26056-0 p.203, p.245
[11] Ting-Yu Chen, David Mikolas et al., Phys.Rev.Research 3 Supplemental Ma- terial, 033138 (2021)
[12] Slavica Stankic, Robinson Cortes-Huerto, Nicoleta Crivat, Dominique Demaille, Jacek Goniakowskiab and Jacques Jupille, Nanoscale 5 2448-2453 (2013)