簡易檢索 / 詳目顯示

研究生: 蔡政延
Tsai, Cheng-Yen
論文名稱: 以原子層沉積法製備高效率銅銦鎵硒太陽能電池之硫氧化鋅緩衝層
High efficiency CuInGaSSe solar cell with ZnOS buffer by atomic layer deposition
指導教授: 甘炯耀
Gan, Jiung-Yao
口試委員: 賴志煌
Lai, Chih-Huang
柯志忠
Ke, Chih-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 52
中文關鍵詞: 太陽能電池原子層沉積緩衝層硫氧化鋅
外文關鍵詞: Solar, ALD, Buffer, ZnOS
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著地球能源日益枯竭,再生能源被視為一項重要的課題,現今太陽能發電為再生能源中相當重要的研究領域,其中又以銅銦鎵硒硫(CIGSSe)太陽能電池為具有發展潛力的太陽能電池種類,因為它具有直接能隙,可製作於可撓式基板上的好處。但傳統銅銦鎵硒硫太陽能電池使用硫化鎘(CdS)做為緩衝層材料,其高毒性易嚴重汙染環境。因此,本論文著重在使用原子層沉積法製備無毒硫氧化鋅(Zn(O,S))緩衝層以取代傳統硫化鎘(CdS)緩衝層。本論文分為以下四部分。首先,我們會用表面硫化解釋為什麼製程參數所設定的硫氧比不等於實際的硫氧比,並提出一個修改過後的製程參數,以減緩此效應。第二部分為探討不同試片表面對緩衝層最佳厚度以及表面處理對緩衝層的影響,並藉由蝕刻水浴法製備的緩衝層後,使用原子層沉積法製備緩衝層,在不需要抗反射層的情形下,達到17.01%的高效率。第三部分將探討製程溫度對緩衝層成分的影響。而第四部份將探討高應變點玻璃基板和鈉玻璃基板所製成的銅銦鎵硒硫太陽能電池的不同,並藉由鈉玻璃基板元件,做到只靠原子層沉積法,達到16.40%的高效率太陽能元件。


    With gradually decreased energy resource on earth, renewable energy is considered to be an important subject. Nowadays solar cell is an important research category in renewable energy. Among them, CIGSSe is considered to have a great potential because it has direct band gap and can be made on flexible substrate. However, traditional CIGSSe solar cell uses CdS as buffer layer. Its high toxicity is harmful for environmental protection. As a result, in this thesis, we focus on using atomic layer deposition to make non-toxic Zn(O,S) buffer for substituting CdS buffer. There are four main parts in this thesis. First, we will explain that why the process parameters we set is not equal to real element composition by surface sulfurization and propose modified parameters to reduce this kind of effect. Second, we will discuss the difference of optimal buffer thickness on different sample surface and how the surface treatment affects buffer. By using etched CBD Zn(O,S) and deposit ALD Zn(O,S) buffer on it, we can reach lab record efficiency(17.01%) without using anti-reflection layer. Third, we will discuss how the process temperature affects the composition in buffer. And for the fourth part, we will discuss the difference of CIGSSe made on HSPG and SLG. By using CIGSSe on SLG substrate, we can reach 16.40% high efficiency without any treatment on CIGSSe surface.

    中文摘要 i 英文摘要 ii 目錄 iii 圖目錄 v 表目錄 vii 第一章 引言 1 第二章 文獻回顧 3 2.1 太陽能元件工作原理 3 2.1.1 電流-電壓曲線(I-V curve) 4 2.1.2 短路電流(Short circuit current density) 4 2.1.3 開路電壓(Open circuit voltage) 5 2.1.4 填充因子(Fill factor) 6 2.1.5 光電轉換效率(Efficiency) 7 2.2.5 寄生電阻(Parasitic resistance) 7 2.2 銅銦鎵硒薄膜太陽能電池結構 8 2.2.1 基板(Substrate) 9 2.2.2 鉬背電極(Mo back contact) 9 2.2.3 CIGS吸收層(Absorber) 9 2.2.4 緩衝層(Buffer) 10 2.2.5 窗口層(Window layer) 10 2.3 CIGS太陽能電池緩衝層 11 2.3.1 緩衝層的製備方法 12 2.3.2 硫氧化鋅(ZnOS)薄膜的特點 13 2.3.3 ALD薄膜成長機制 15 2.3.4 不同製程製備ZnOS緩衝層的比較 20 2.4 後退火處理 23 2.5 CIGS上表面點接觸鈍化(Point contact passivation) 24 2.6 研究動機 26 第三章 分析儀器介紹 27 3.1 太陽光模擬器與Keithley 4200 SCS 27 3.2 外部量子效率量測儀(External Quantum Efficiency, EQE) 27 3.3紫外光-可見光光譜儀(UV-Visible Spectroscope) 27 3.4 光致螢光頻譜(Photoluminescence, PL)及時間解析光致螢光頻譜(Time Resolved Photoluminescence, TRPL) 28 3.5 X光光電子能譜儀(X-ray Photoluminescence Spectroscopy, XPS) 29 3.6 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 29 3.7 原子力顯微鏡(Atomic Force Microscope, AFM) 29 第四章 結果與討論 30 4.1 製備高效率CIGSSe太陽能電池的關鍵因素-吸收層和緩衝層的能帶匹配 32 4.2 試片表面對ALD緩衝層的影響 35 4.2.1 不同種類試片對緩衝層最佳厚度的影響 36 4.2.2 表面處理對於恢復元件效率的效果 38 4.3 製程溫度對ALD ZnOS緩衝層的影響 41 4.4 玻璃基板對ALD緩衝層的影響 44 第五章 結論 48 參考文獻 49

    [1]https://zh.wikipedia.org/wiki/PN%E7%BB%93
    [2]https://www.pveducation.org/pvcdrom/solar-cell-operation/iv-curve
    [3]https://en.wikipedia.org/wiki/Theory_of_solar_cells
    [4]Motoshi Nakamura et al., Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%, IEEE Journal of Photovotalics, Vol. 9, No. 6, November 2019
    [5]https://www.ctci.org.tw/media/1911/%E9%8A%85%E9%8A%A6%E9%8C%A0%E7%A1%92-cigs-%E8%96%84%E8%86%9C%E5%A4%AA%E9%99%BD%E5%85%89%E9%9B%BB%E6%8A%80%E8%A1%93-%E5%8A%89%E6%8C%AF%E9%82%A6.pdf
    [6]Tokio Nakada et al., Improved Cu(In,Ga)(S,Se)2 thin film solar cells by surface sulfurization , Solar Energy Materials and Solar Cells, 1997.25(7): p. 285-290
    [7]D. Hariskos et al., Buffer layers in Cu(In,Ga)Se2 solar cells and modules, Thin Solid Films 480–481 (2005) p. 99– 109.
    [8]Serhan, J., et al., Electrical characterization of CIGSe solar cells metastability with Zn(S,O,OH)–ZnMgO interface buffer layers. Solar Energy Materials and Solar Cells, 2010. 94(11): p. 1884-1888
    [9]R. Bhargava et al., Bandgap Engineering and Doping of ZnO and ZnOS Nanocrystals, Journal of the Korean Physical Society, Vol. 53, No. 5, November 2008, pp. 2847~2851
    [10]K. Pal et al., A Review on the Current and Future Possibilities of Copper-Zinc Tin Sulfur Thin Film Solar Cell to Increase More Than 20% Efficiency, Advanced Science, Engineering and Medicine, Vol. 10, 1–7, 2018
    [11]Nakashima, K., et al., Wide-Gap Cu(In,Ga)Se Solar Cells with Zn(O,S) Buffer Layers Prepared by Atomic Layer Deposition. Japanese Journal of Applied Physics, 2012.p.10NC15-1-3
    [12]https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&sid=0J249620566869873056
    [13]https://www.polybell.com.tw/page/news/show.aspx?num=79&kind=11&page=2
    [14]T. Kääriäinen et al., Atomic Layer Deposition: Principles, Characteristics, and Nanotechnology Applications, 2nd Edition, May 2013
    [15]Z. Li1, Z.W., P. Liao1, T. Chao, L. Zhu, R. Kaczynski, U. Schoop, and T.J. Anderson et al, ALD of In-doped ZnO. IEEE Journal of Photovoltaics, 2016.30(3): p. 1480-1483
    [16]S. Kim et al., Atomic Layer Deposition for Preparation of Highly Efficient Catalysts for Dry Reforming of Methane, Catalysts 2019, 9(3), 266
    [17]Kobayashi, T., et al., A comparative study of Cd- and Zn-compound buffer layers on Cu(In1−x,Gax)(Sy,Se1−y)2thin film solar cells. Progress in Photovoltaics: Research and Applications, 2016. 24(3): p. 389-396
    [18]T. Nakada and M. Mizutani, Improved efficiency of Cu(In,Ga)Se/sub 2/ thin film solar cells with chemically deposited ZnS buffer layers by air-annealing-formation of homojunction by solid phase diffusion, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036), Anchorage, AK, USA, 2000, pp. 529-534.
    [19] J. Kessler. et al., Chemical bath deposition of CdS on CuInSe2 etching effects and growth kinetics, Proceedings of the PVSEC-6, New Delhi, India, Oxford & IBH Publishing Co. PVT. LTD, New Delhi, 1992, p. 1005
    [20]M. Gostein and L. Dunn, Light soaking effects on photovoltaic modules: Overview and literature review, 2011 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, 2011, pp. 003126-003131.
    [21]Jensen, S.A., et al., Optically induced metastability in Cu(In,Ga)Se2. Sci Rep, 2017. 7(1): p. 13788.
    [22]Katsumi Kushiya, M.T., Takahisa Kase, Yoshinori Nagoya, Tadayuki Miura, Improved FF Of ClGS Thin-Flim Mini-Modules With Zn(O,S,OH), Buffer By Post-Deposition Light Soaking. IEEE Journal of Photovoltaics, 1997.20(13): p. 327-330.
    [23] G. Hass, J.B.H., W. R. Hunter, and D. W. Angel et al, Effect of UV irradiation on evaporated ZnS films. APPLIED OPTICS, 1980.19(15): p. 2480-2481.
    [24]Nakada, T., et al., Impacts of Post-Treatments on Cell Performance of CIGS Solar Cells With Zn-Compound Buffer Layers. IEEE Journal of Photovoltaics, 2013. 3(1): p. 461-466.
    [25]Wolfram Witte et al., Impact of annealing on Cu(In,Ga)Se2 solar cells with Zn(O,S)/(Zn,Mg)O buffers, Thin Solid Films 535(1):180–183, May 2013
    [26]T. Nakada, Diffusion Behavior and Microstructural Properties of the CBD-ZnS/CIGS Interface Boundary, MRS Proceedings 668, 2001
    [27]C. Lee et al., Effects of Zn Diffusion from (Zn,Mg)O Buffer to CIGS Film
    on the Performance of Cd-Free Cu(In,Ga)Se2 Solar Cells, ECS Journal of Solid State Science and Technology, 3 (6) Q99-Q103 (2014)
    [28]G. Sozzi et al., Impact of front-side point contact/passivation geometry on thin-film solar cell, Solar Energy Materials & Solar Cells 165 (2017) 94–102
    [29]J. Löckinger et al., The use of HfO2 in a point contact concept for front interface passivation of Cu(In,Ga)Se2 solar cells, Solar Energy Materials and Solar Cells 195 (2019) 213–219
    [30]J. Keller et al., On the beneficial effect of Al2O3 front contact passivation in Cu(In,Ga) Se2 solar cells, Solar Energy Materials & Solar Cells 159 (2017) 189–196
    [31]T. Nakada et al., Cu(In,Ga)Se2 thin film solar cells with a combined ALD-Zn(O,S) buffer and MOCVD-ZnO:B window layers, Solar Energy Materials and Solar Cells 119(2013) 129-133
    [32]S. Sharbati and J. R. Sites, Impact of the Band Offset for n-Zn(O,S)/p-Cu(In,Ga)Se2 Solar Cells, IEEE Journal of Photovoltaics, vol. 4, no. 2, pp. 697-702, March 2014
    [33]Qian Luo, The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification, December 2012

    QR CODE