簡易檢索 / 詳目顯示

研究生: 李岳芳
Li, Yue-Fang
論文名稱: 應用晶格波茲曼法模擬剪切流動下之液滴互動現象
Application of lattice Boltzmann method to simulate droplet interaction phenomenon under shear flow
指導教授: 林昭安
Lin, Chao-An
口試委員: 牛仰堯
吳毓庭
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 51
中文關鍵詞: 晶格波茲曼法兩相流液滴互動圖形顯示卡
外文關鍵詞: Lattice Boltzmann method, Two-phase flow, droplet interaction, GPU
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文採用單弛豫晶格波茲曼方法結合Cahn-Hilliard 模型計算了剪切流下濃度對液滴互 動和剪切速率的影響。在研究液滴濃度的影響時,將液滴濃度分為三個方向:x方向、y方 向、z方向。此研究僅關注x方向和y方向上濃度的影響。對於給定的x方向濃度,y方向 濃度的增加會使液滴更容易合併。相反,對於給定的y方向濃度,x方向濃度的增加會導致 聚結更具挑戰性。而對於剪切速率的影響,我們發現結果會隨著特徵速度的改變而改變,速 度越高,液滴聚結的可能性就越大,我們也對遠離臨界毛細管數的區域進行驗證,並發現特 徵速度的影響僅作用於臨界毛細管數的附近。


    In this thesis, the single-relaxation lattice Boltzmann method combined with the CahnHilliard model is employed to calculate the influence of concentration on droplet coalescence and shear rate under shear flow. When investigating the impact of droplet concentration, the droplet concentration is divided into three directions: x-direction, y-direction, and z-direction.
    The analysis only focuses on the effects of concentration in the x-direction and y-direction. For a given x-direction concentration, an increase in y-direction concentration results making it easier for droplets to merge. Conversely, for a given y-direction concentration, an increase in xdirection concentration leads to more challenging to coalescence. And regarding the influence of shear rate, the results will vary with changes in characteristic velocity. The higher the velocity, the greater the likelihood of droplet coalescence.

    1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Lattice Boltzmann method . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Multiphase fluid systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.3 Graphics processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Experiment about the droplet coalescence . . . . . . . . . . . . . . . . . 3 1.2.2 Numerical simulation about droplet coalescence . . . . . . . . . . . . . . 4 1.2.3 GPU implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Objective and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Methodology 9 2.1 The Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 The BGK and low-Mach number approximation . . . . . . . . . . . . . . . . . . 10 2.3 Discretization of the Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1 Discretization of space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.2 Discretization of time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Lattice Boltzmann model for multi-phase flow . . . . . . . . . . . . . . . . . . . 14 2.4.1 The free-energy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.2 The governing equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.3 Discrete Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . 16 iv 2.4.4 Interface capturing equation . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5 Summary of lattice Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . 20 2.6 GPU implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 Results and Discussion 24 3.1 Validation: Deformation of a 2-D droplet under shear flow. . . . . . . . . . . . . 25 3.2 Validation: Comparisons of droplet outlines in confined shear flow . . . . . . . . 27 3.3 Influence of droplet concentration on droplet coalescence in confined shear flow . 29 3.3.1 Droplet concentration of x- and y-direction . . . . . . . . . . . . . . . . . 32 3.4 Critical Capillary number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4.1 Analysis of different Ca with fixed Re . . . . . . . . . . . . . . . . . . . . 35 3.4.2 Effect of shear velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.3 Critical Capillary number . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4 Conclusion and Future Work 44 v

    [1] Bingquan Huang, Hong Liang, and Jiangrong Xu. Lattice boltzmann simulation of
    binary three-dimensional droplet coalescence in a confined shear flow. Physics of Fluids,
    34(3):032101, 2022.
    [2] Orest Shardt, JJ Derksen, and Sushanta K Mitra. Simulations of droplet coalescence in
    simple shear flow. Langmuir, 29(21):6201–6212, 2013.
    [3] Uriel Frisch, Brosl Hasslacher, and Yves Pomeau. Lattice-gas automata for the navierstokes equation. In Lattice Gas Methods for Partial Differential Equations, pages 11–18.
    CRC Press, 2019.
    [4] Stephen Wolfram. Cellular automaton fluids 1: Basic theory. In Lattice Gas Methods for
    Partial Differential Equations, pages 19–74. CRC Press, 2019.
    [5] S Succi, E Foti, and F Higuera. Three-dimensional flows in complex geometries with the
    lattice boltzmann method. EPL (Europhysics Letters), 10(5):433, 1989.
    [6] F J Higuera and Javier Jim´enez. Boltzmann approach to lattice gas simulations. EPL
    (Europhysics Letters), 9(7):663, 1989.
    [7] Prabhu Lal Bhatnagar, Eugene P Gross, and Max Krook. A model for collision processes
    in gases. i. small amplitude processes in charged and neutral one-component systems.
    Physical review, 94(3):511, 1954.

    [8] Stewart Harris. An introduction to the theory of the Boltzmann equation. Courier
    Corporation, 2004.
    [9] Uriel Frisch, Dominique d’Humi`eres, Brosl Hasslacher, Pierre Lallemand, Yves Pomeau,
    and Jean-Pierre Rivet. Lattice gas hydrodynamics in two and three dimensions. In Lattice
    Gas Methods for Partial Differential Equations, pages 77–136. CRC Press, 2019.
    [10] Danial O Martinez, William H Matthaeus, Shiyi Chen, and DC Montgomery. Comparison
    of spectral method and lattice boltzmann simulations of two-dimensional hydrodynamics.
    Physics of Fluids, 6(3):1285–1298, 1994.
    [11] Ruben Scardovelli and St´ephane Zaleski. Direct numerical simulation of free-surface and
    interfacial flow. Annual review of fluid mechanics, 31(1):567–603, 1999.
    [12] Stanley Osher and Ronald P Fedkiw. Level set methods: an overview and some recent
    results. Journal of Computational physics, 169(2):463–502, 2001.
    [13] Daniel M Anderson, Geoffrey B McFadden, and Adam A Wheeler. Diffuse-interface
    methods in fluid mechanics. Annual review of fluid mechanics, 30(1):139–165, 1998.
    [14] Thomas Y Hou, John S Lowengrub, and Michael J Shelley. Boundary integral methods
    for multicomponent fluids and multiphase materials. Journal of Computational Physics,
    169(2):302–362, 2001.
    [15] Pei-Yao Hong, Li-Min Huang, Li-Song Lin, and Chao-An Lin. Scalable multi-relaxationtime lattice boltzmann simulations on multi-gpu cluster. Computers & Fluids, 110:1–8,
    2015.
    [16] JR Adam, NR Lindblad, and CD Hendricks. The collision, coalescence, and disruption of
    water droplets. Journal of Applied Physics, 39(11):5173–5180, 1968.
    [17] N Ashgriz and JY Poo. Coalescence and separation in binary collisions of liquid drops.
    Journal of Fluid Mechanics, 221:183–204, 1990.
    [18] YJ Jiang, A Umemura, and CK Law. An experimental investigation on the collision
    behaviour of hydrocarbon droplets. Journal of Fluid Mechanics, 234:171–190, 1992.
    [19] J Qian and Chung King Law. Regimes of coalescence and separation in droplet collision.
    Journal of fluid mechanics, 331:59–80, 1997.
    [20] Keeney Willis and Melissa Orme. Binary droplet collisions in a vacuum environment: an
    experimental investigation of the role of viscosity. Experiments in fluids, 34(1):28–41, 2003.
    [21] Dongju Chen, Ruth Cardinaels, and Paula Moldenaers. Effect of confinement on droplet
    coalescence in shear flow. Langmuir, 25(22):12885–12893, 2009.
    [22] Pieter De Bruyn, Dongju Chen, Paula Moldenaers, and Ruth Cardinaels. The effects of
    geometrical confinement and viscosity ratio on the coalescence of droplet pairs in shear
    flow. Journal of Rheology, 58(6):1955–1980, 2014.
    [23] MR Nobari, Y-J Jan, and G Tryggvason. Head-on collision of drops—a numerical
    investigation. Physics of Fluids, 8(1):29–42, 1996.
    [24] MRH Nobari and Gretar Tryggvason. Numerical simulations of three-dimensional drop
    collisions. AIAA journal, 34(4):750–755, 1996.
    [25] N Nikolopoulos, K-S Nikas, and G Bergeles. A numerical investigation of central binary
    collision of droplets. Computers & Fluids, 38(6):1191–1202, 2009.
    [26] N Nikolopoulos, A Theodorakakos, and G Bergeles. Off-centre binary collision of droplets:
    A numerical investigation. International Journal of Heat and Mass Transfer, 52(19-
    20):4160–4174, 2009.
    [27] Kannan N Premnath and John Abraham. Simulations of binary drop collisions with a
    multiple-relaxation-time lattice-boltzmann model. Physics of Fluids, 17(12):122105, 2005.
    [28] Xiaoyi He, Shiyi Chen, and Raoyang Zhang. A lattice boltzmann scheme for incompressible
    multiphase flow and its application in simulation of rayleigh–taylor instability. Journal of
    computational physics, 152(2):642–663, 1999.
    [29] Ali Mazloomi Moqaddam, Shyam S Chikatamarla, and Ilya V Karlin. Simulation of
    binary droplet collisions with the entropic lattice boltzmann method. Physics of Fluids,
    28(2):022106, 2016.
    [30] Daniel Lycett-Brown, Kai H Luo, Ronghou Liu, and Pengmei Lv. Binary droplet collision
    simulations by a multiphase cascaded lattice boltzmann method. Physics of Fluids,
    26(2):023303, 2014.
    [31] Kai Sun, Ming Jia, and Tianyou Wang. Numerical investigation of head-on droplet collision
    with lattice boltzmann method. International Journal of Heat and Mass Transfer, 58(1-
    2):260–275, 2013.
    [32] Taehun Lee and Lin Liu. Lattice boltzmann simulations of micron-scale drop impact on
    dry surfaces. Journal of Computational Physics, 229(20):8045–8063, 2010.
    [33] Peter Ojo Olapade, Rajesh Kumar Singh, and Kausik Sarkar. Pairwise interactions between
    deformable drops in free shear at finite inertia. Physics of Fluids, 21(6):063302, 2009.
    [34] Nilkamal Barai and Nibir Mandal. Breakup versus coalescence of closely packed fluid drops
    in simple shear flows. International Journal of Multiphase Flow, 111:1–15, 2019.
    [35] Takaji Inamuro, Tajima Ogata, S Tajima, and N Konishi. A lattice boltzmann method for
    incompressible two-phase flows with large density differences. Journal of Computational
    physics, 198(2):628–644, 2004.
    [36] Orest Shardt, Sushanta K Mitra, and JJ Derksen. The critical conditions for coalescence
    in phase field simulations of colliding droplets in shear. Langmuir, 30(48):14416–14426,
    2014.
    [37] Dave Steinkraus, Ian Buck, and PY Simard. Using gpus for machine learning algorithms.
    In Eighth International Conference on Document Analysis and Recognition (ICDAR’05),
    pages 1115–1120. IEEE, 2005.
    [38] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schr¨oder. Sparse matrix solvers on the
    gpu: conjugate gradients and multigrid. ACM transactions on graphics (TOG), 22(3):917–
    924, 2003.
    [39] Fang-An Kuo, Matthew R Smith, Chih-Wei Hsieh, Chau-Yi Chou, and Jong-Shinn
    Wu. Gpu acceleration for general conservation equations and its application to several
    engineering problems. Computers & Fluids, 45(1):147–154, 2011.
    [40] Jonas T¨olke. Implementation of a lattice boltzmann kernel using the compute unified device
    architecture developed by nvidia. computing and Visualization in Science, 13(1):29–39,
    2010.
    [41] Jonas T¨olke and Manfred Krafczyk. Teraflop computing on a desktop pc with gpus for 3d
    cfd. International Journal of Computational Fluid Dynamics, 22(7):443–456, 2008.
    [42] Christian Obrecht, Fr´ed´eric Kuznik, Bernard Tourancheau, and Jean-Jacques Roux. A
    new approach to the lattice boltzmann method for graphics processing units. Computers
    & Mathematics with Applications, 61(12):3628–3638, 2011.
    [43] Wang Xian and Aoki Takayuki. Multi-gpu performance of incompressible flow computation
    by lattice boltzmann method on gpu cluster. Parallel Computing, 37(9):521–535, 2011.
    [44] Joe Myre, Stuart DC Walsh, D Lilja, and Martin O Saar. Performance analysis of singlephase, multiphase, and multicomponent lattice-boltzmann fluid flow simulations on gpu
    clusters. Concurrency and Computation: Practice and Experience, 23(4):332–350, 2011.
    [45] Hua Zhou and C Pozrikidis. The flow of suspensions in channels: single files of drops.
    Physics of Fluids A: Fluid Dynamics, 5(2):311–324, 1993.
    [46] Xiaoyi He and Li-Shi Luo. Theory of the lattice boltzmann method: From the boltzmann
    equation to the lattice boltzmann equation. Physical review E, 56(6):6811, 1997.
    [47] Xiaoyi He and Li-Shi Luo. Lattice boltzmann model for the incompressible navier–stokes
    equation. Journal of statistical Physics, 88(3):927–944, 1997.
    [48] Dieter A Wolf-Gladrow. Lattice-gas cellular automata and lattice Boltzmann models: an
    introduction. Springer, 2004.
    [49] Taehun Lee. Effects of incompressibility on the elimination of parasitic currents in the
    lattice boltzmann equation method for binary fluids. Computers & Mathematics with
    Applications, 58(5):987–994, 2009.
    [50] D Jamet, O Lebaigue, N Coutris, and JM Delhaye. The second gradient method for
    the direct numerical simulation of liquid–vapor flows with phase change. Journal of
    Computational Physics, 169(2):624–651, 2001.
    [51] John Shipley Rowlinson and Benjamin Widom. Molecular theory of capillarity. Courier
    Corporation, 2013.
    [52] Vivien M Kendon, Michael E Cates, Ignacio Pagonabarraga, J-C Desplat, and Peter
    Bladon. Inertial effects in three-dimensional spinodal decomposition of a symmetric binary
    fluid mixture: a lattice boltzmann study. Journal of Fluid Mechanics, 440:147–203, 2001.
    [53] Junseok Kim. A continuous surface tension force formulation for diffuse-interface models.
    Journal of Computational Physics, 204(2):784–804, 2005.
    [54] Pengtao Yue, Chunfeng Zhou, and James J Feng. Spontaneous shrinkage of drops and
    mass conservation in phase-field simulations. Journal of Computational Physics, 223(1):1–
    9, 2007.
    [55] Hung-Wen Chang, Pei-Yao Hong, Li-Song Lin, and Chao-An Lin. Simulations of flow
    instability in three dimensional deep cavities with multi relaxation time lattice boltzmann
    method on graphic processing units. Computers & Fluids, 88:866–871, 2013.
    [56] Anthony JC Ladd. Numerical simulations of particulate suspensions via a discretized
    boltzmann equation. part 1. theoretical foundation. Journal of fluid mechanics, 271:285–
    309, 1994.
    [57] Kaustav Chaudhury, Shubhadeep Mandal, and Suman Chakraborty. Droplet migration
    characteristics in confined oscillatory microflows. Physical Review E, 93(2):023106, 2016.
    [58] F Magaletti, Francesco Picano, M Chinappi, Luca Marino, and Carlo Massimo Casciola.
    The sharp-interface limit of the cahn–hilliard/navier–stokes model for binary fluids.
    Journal of Fluid Mechanics, 714:95–126, 2013.

    QR CODE