簡易檢索 / 詳目顯示

研究生: 吳建利
論文名稱: 應用滾壓式奈米壓印技術製作次波長金屬線柵偏光元件於液晶顯示器之研究
Fabrication of Subwavelength Metallic Wire-Grid Polarizers for Liquid Crystal Displays Using Roll-to-Roll Nanoimprint Technology
指導教授: 宋震國
口試委員: 李永春
楊申語
洪景華
余沛慈
陳政寰
傅建中
宋震國
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 105
中文關鍵詞: 增亮膜電鍍鎳電鑄鎳無電鍍鎳金屬舉離製程斜向鍍膜電漿修整連續滾壓式壓印熱壓印紫外線壓印金屬線柵偏光片
外文關鍵詞: Brightness enhancement, Electrodeposition, Electroforming, Electroless nickel (EN) deposition, Lift-off, Oblique deposition, Plasma trimming, Roll-to-roll (R2R), Thermal nanoimprint, UVNIL, Wire-grid polarizer (WGP)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討利用奈米壓印技術,製作高性能金屬線柵偏光片應用於液晶顯示器。為了要在可見光波段獲得最佳的偏光性能,該光學元件的製程特性須滿足非常高的加工精度及重複性,以製作極精細與低缺陷密度的金屬光柵。目前大多數的製程方案都還面臨著大量生產與低成本的加工挑戰。

    因此,本研究開發了三種壓印平台,分別在玻璃與塑膠基板上進行高精度奈米壓印及相關金屬化製程,徹底瞭解製程中各種特性對於元件光學性能的影響,其中包含了批次式熱壓印及紫外線壓印技術,與連續滾壓式紫外線奈米壓印。另一方面,本研究採用可撓式塑膠及鎳合金模具,分別應用於平面及滾壓製程,來提升大面積的壓印均勻性與壓印品質。

    為了強化整體製程品質、重複性、以及元件偏光性能,研究中透過精確的光學模擬分析與實驗數據驗證結構深寬比、幾何對稱性、及殘餘層厚度變化對光學特性的影響。此外並透過多層光柵結構的配置與金屬鍍膜製程最佳化,有效達成利用大週期偏光結構取代小週期結構,可在製程困難度大幅降低的情況下,進一步的獲得更好的偏光性能。

    實驗結果顯示,最小線寬達9奈米、且深寬比大於18:1的光柵結構已成功透過連續滾壓製程搭配電漿修整技術實現。利用該結構製作的可撓式金屬線柵偏光片,在可見光波段平均穿透率為83%,消光比可達12000:1、並且滿足全波段穿透率變化小於3%的低色偏特性。


    This thesis involves the fabrication of high-performance wire-grid polarizers (WGPs) by using nanoimprint lithography (NIL) for the application of liquid crystal displays (LCDs). To obtain the optimal level of polarization performance in the visible spectrum, the WGPs require an ultra-high-precision and reproducible manufacturing process that can fabricate extremely fine metallic gratings that possess a low density of defects. Most current manufacturers are confronted by a bottleneck, struggling to produce a large volume at a low cost.

    Therefore, three nanoimprint platforms were developed using glass and plastic substrates, including batch-type thermal NIL, UVNIL, and roll-to-roll (R2R) UVNIL, and flexible working stamps composed of plastic and nickel alloys to facilitate large-area nanoimprinting that yields products of excellent quality and uniformity. These approaches allowed the optical properties and characteristics of each fabrication process to be thoroughly investigated.

    To enhance the fabrication tolerance, repeatability, and optical performance of the WGPs, the grating aspect ratio, profile symmetry, and varying residual layer thicknesses (RLTs) were precisely simulated and controlled to achieve the targeted designs. Applying multilayer WGP grating configurations and optimal metal deposition processing substantially reduced manufacturing difficulties, enabling small WGP pitches to be replaced with large pitches, achieving improved optical performance.

    Consequently, 9-nm-linewidth gratings with high aspect ratios larger than 18:1 were fabricated using R2R nanoimprinting and plasma trimming, achieving flexible WGPs that demonstrated high levels of optical performance (up to 12000:1 extinction ratio (ER) with an average transmittance of 83%) and a low color shift (transmittance variation less than 3%).

    Abstract I 摘要 II Contents III List of Figures V List of Tables XII Chapter 1 Introduction 1 1.1 Basics of Liquid Crystal Displays 1 1.2 Improving the Power Efficiency of LCDs 3 1.2.1 Brightness Enhancement Films 3 1.2.2 Reflective Polarizers 6 1.2.3 Polarized Light Guide Plates That Employ Subwavelength Gratings 10 1.3 Targets and Organizations of Research 11 Chapter 2 Wire Grid Polarizers 14 2.1 Basics of WGPs 14 2.2 Manufacturing Approaches 21 Chapter 3 WGP Fabrication Using Thermal NIL and Lift-off Processing on Polymeric Films 28 3.1 Process Requirements and Experimental Setup 28 3.2 WGP Fabrication Results 31 3.3 Optical Properties 34 3.4 Additional Approaches for Improving Optical Performance 37 3.5 Summary 43 Chapter 4 WGP Fabrication Using UVNIL and Oblique Deposition on Glass Substrates 44 4.1 Nanoimprint and Plasma Trimming Processing 44 4.1.1 Nanoimprint for High Precision Patterning 46 4.1.2 Plasma Trimming for Resolution Enhancement 50 4.2 Metallization Process for Optimal Polarization Performance and Spectral Uniformity 51 4.2.1 Single Oblique Deposition 51 4.2.2 Double-Layer WGPs 59 4.2.3 Double Oblique Deposition 62 4.3 100-nm-Pitch WGPs 65 4.4 Summary 67 Chapter 5 WGP Fabrication Using R2R-UVNIL on Polymeric Films 68 5.1 Process Requirements 68 5.2 Roller Stamp Fabrication 70 5.2.1 Nickel Stamp Fabrication Using Electroforming 70 5.2.2 Nickel Stamp Fabrication Using Stressed Electrodeposition 72 5.2.3 Nickel Stamp Fabrication Using Electroless Deposition 80 5.3 R2R-UVNIL and Metallization Processing 83 5.3.1 Single-Layer WGPs 84 5.3.2 Multi-Layer WGPs 87 5.4 Summary 90 Chapter 6. Conclusion and Future Works 91 6.1 Conclusion 91 6.2 Future Works 93 References 95

    [1] Agoura Technologies 2008 Wire Grid Polarizers: a New High Contrast Polarizer Technology for Liquid Crystal Displays Agoura PolarBrite Technolgy Whitepaper
    [2] Bhowmik A K, Li Z and Bos P J 2008 Mobile Displays: Technology and Applications (Chichester: John Wiley & Sons Ltd) 191
    [3] 3M Vikuiti™ Brightness Enhancement Films Datasheets
    [4] 3M Vikuiti™ Dual Brightness Enhancement Films Datasheets
    [5] Wortmam D L 1997 A recent advance in reflective polarizer technology Proc. of the 1997 International Display Research Conference (Society for Information Display) M98–106
    [6] Ahn S W, Lee K D, Kim J S, Kim S H, Park J D, Lee S H and Yoon P W 2005 Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography Nanotechnology 16 1874–7
    [7] Chen C C and Chen C H 2009 Polarization property of light guide surface with bilayered nanostructure Opt. Rev. 16 416–21
    [8] Optics Balzers AG Additive and Subtractive Color Filters Datasheet OBA 023 PE (0901-1)
    [9] Nanosys Inc. QDEF-Product-Brief
    [10] Lin F C, Huang Y P, Wei C M and Shieh H P 2010 Color filter-less LCDs in achieving high contrast and low power consumption by stencil field-sequential-color method J. Disp. Technol. 6 98–106
    [11] Jones V W, Theiss S, Gardiner M, Clements J and Florczak J 2009 Roll to roll manufacturing of subwavelength optics Proc. of SPIE 7205 72050T-1
    [12] Bryan W J, Sewall N D and Clements J E 2006 Diamond tool with a multi-tipped diamond U.S. Patent 7140812B2
    [13] Ahn S H and Guo L J 2009 Dynamic nanoinscribing for continuous and seamless metal and polymer nanogratings Nano Lett. 9 4392–7
    [14] Ok J G, Park H J, Kwak M K, Pina-Hernandez C A, Ahn S H and Guo L J 2011 Continuous patterning of nanogratings by nanochannel-guided lithography on liquid resists Adv. Mater. 23 4444–8
    [15] Lin B J 2012 Future of multiple-e-beam direct-write systems Proc. of SPIE 8323 832302
    [16] Heilmann R K, Chen C G, Konkola P T and Schattenburg M L 2004 Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders Nanotechnology 15 S504–11 
    [17] Robinson M D, Chen J and Sharp G D 2005 Polarization Engineering for LCD Projection (Chichester: John Wiley & Sons Ltd) 85–8
    [18] Weber M F, Stover C A, Gilbert L R, Nevitt T J and Ouderkirk A J 2000 Giant birefringent optics in multilayer polymer mirrors Science 287 2451–6
    [19] Yu M Y, Lee B W, Lee J H and Ko J H 2009 Correlation between the optical performance of the reflective polarizer and the structure of LCD backlight J. Opt. Soc. Korea 13 256–60
    [20] Coates D, Goulding M J, Greenfield S, Hammer J M, Marden S A and Parri Q L 1996 High performance wide-band reflective cholesteric polarizers SID Int. Symp. Digest Tech. Papers Application Session 27 67–70
    [21] Lueder E 2011 Liquid Crystal Displays: Addressing Schemes and Electro-Optical Effects 2nd Edition (Chichester: John Wiley & Sons Ltd) 141–2
    [22] Bass M 1995 Handbook of Optics vol 2 Devices, Measurements, & Properties 2nd Edition (New York: McGraw-Hill) 3.32–5
    [23] Pentico C, Gardner E, Hansen D and Perkins R 2001 New, high performance, durable polarizers for projection displays SID 01 Technical Digest 1287–9
    [24] Bhowmik A K, Li Z and Bos P J 2008 Mobile Displays: Technology and Applications (Chichester: John Wiley & Sons Ltd) 100–1
    [25] Sonek G J, Wagner D K and Ballantyne J M 1983 Optical polarizers for the ultraviolet Appl. Optics 22 1270–2
    [26] Moxtek ProFlux® Visible Light Polarizers - PPL & PFU Series Datasheet OPT-DATA-1004, Rev G
    [27] Asahi Kasei Wire-Grid Polarizing Film WGF™ http://www.asahi-kasei.co.jp/ake-mate/wgf/en/index.html (accessed on August 12, 2013)
    [28] Ge Z, Zhu X and Wu S T 2006 A transflective liquid crystal display using an internal wire grid polarizer J. Disp. Technol.2 102–5
    [29] Wu S T 2003 Reflective and transflective liquid crystal display using a wire grid polarizer U.S. Patent 6977702B2
    [30] Ge Z, Wu T X and Wu S T 2008 Single cell gap and wide-view transflective liquid crystal display using fringe field switching and embedded wire grid polarizer Appl. Phys. Lett. 92 051109
    [31] 3M Vikuiti™ Brightness Enhancement Film—Reflective Polarizer (BEF-RP) Datasheets
    [32] Pang Z and Li L 1999 Novel high-efficiency polarizing backlighting system with a polarizing beam splitter SID 99 Technical Digest 916–20 
    [33] Jagt H J B, Cornelissen H J and Broer D J 2002 Micro-structured polymeric linearly polarized light emitting lightguide for LCD illumination SID 02 Technical Digest 1236–9
    [34] Jagt H J B, Cornelissen H J and Broer D J 2004 Polarized light LCD backlight based on liquid crystalline polymer film: a new manufacturing process SID 04 Technical Digest 1178–81
    [35] Chien K W, Shieh H P and Cornelissen H 2004 Polarized backlight based on selective total internal reflection at microgrooves Appl. Optics 43 4672–6
    [36] Chien K W and Shieh H P 2004 Design and fabrication of an integrated polarized light guide for liquid-crystal-display illumination Appl. Optics 43 1830–4
    [37] Yang X, Yan Y and Jin G 2005 Polarized light-guide plate for liquid crystal display Opt. Express 13 8349–56
    [38] Chen C H, Chen P C and Chen C C 2009 High extinction ratio polarized light guide with layered cross stacking nanostructure Microelectron. Eng. 86 1107–10
    [39] Chou S Y, Krauss P R and Renstrom P J 1996 Imprint lithography with 25-nanometer resolution Science 272 85–7
    [40] Lin B J 2004 Immersion lithography and its impact on semiconductor manufacturing J. Microlith., Microfab., Microsyst. 3 377–95
    [41] Finders J, Dusa M, Vleeming B, Hepp B, Maenhoudt M, Cheng S and Vandeweyer T 2009 Double patterning lithography for 32 nm: critical dimensions uniformity and overlay control considerations J. Micro-Nanolithogr. MEMS MOEMS 8 011002
    [42] Fay B 2002 Advanced optical lithography development, from UV to EUV Microelectron. Eng. 61–62 11–24
    [43] International Technology Roadmap for Semiconductors, 2011 Edition – Lithography
    [44] Ge Z and Wu S T 2008 Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays Appl. Phys. Lett. 93 121104
    [45] Hertz H 1893 Electric Waves (London: Macmillan and Company, Ltd.)
    [46] Bird G R nd Maxfield P Jr. 1960 The wire grid as a near-infrared polarizer J. Opt. Soc. Am. 50 886–91
    [47] Young J B, Graham H A and Peterson E W 1965 Wire grid infrared polarizer Appl. Optics 4 1023–6
    [48] Stenkamp B, Abraham M, Ehrfeld W, Knapek, Hintermaier M, Gale M T and Morf R 1994 Grid polarizer for the visible spectral region Proc. SPIE 2213 288–96 
    [49] Tamada H, Doumuki T, Yamaguchi T and Matsumoto S 1997 Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-μm-wavelength band Opt. Lett. 22 419–21
    [50] JVC DLA-HD1 Full High-Definition Home Theatre Front projector http://www.jvc.se/site/sv/dla-hd1/glossary.html (accessed on August 12, 2013)
    [51] Wang J J, Chen L, Liu X, Sciortino P, Liu F, Walters F and Deng X 2006 30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography Appl. Phys. Lett. 89 141105
    [52] Weber T, Fuchs H J, Schmidt H, Kley E B and Tünnermann A 2009 Wire-grid polarizer for the UV spectral region Proc. of SPIE 7205 720504-1
    [53] Corning EAGLE2000 AMLCD Glass Substrates Material Information
    [54] Rahman A. T. M. A, Majewski P and Vasilev K 2012 Extraordinary optical transmission: coupling of the Wood–Rayleigh anomaly and the Fabry–Perot resonance Opt. Lett. 37 1742–4
    [55] Bass M 2010 Handbook of Optics vol 1 Geometrical and Physical Optics, Polarized Light, Components and Instruments 3rd Edition (New York: McGraw-Hill) 13.30–3
    [56] Rogers J A and Lee H H 2009 Unconventional Nanopatterning Techniques and Applications (New Jersey: John Wiley & Sons, Inc.) 580–1
    [57] Wang J J, Liu F, Deng X, Liu X, Chen L, Sciortino P and Varghese R 2005 Monolithically integrated circular polarizers with two-layer nano-gratings fabricated by imprint lithography J. Vac. Sci. Technol. B 23 3164–7
    [58] Ekinci Y, Solak H H, David C and Sigg H 2006 Bilayer Al wire-grids as broadband and high-performance polarizers Opt. Express 14 2323–34
    [59] Seo J S, Yeom T E and Ko J H 2012 Experimental and simulation study of the optical performances of a wide grid polarizer as a luminance enhancement film for lcd backlight applications J. Opt. Soc. Korea 16 151–6
    [60] Yang Z Y and Lu Y F 2007 Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions Opt. Express 15 9510–9
    [61] Pelletier V, Asakawa K, Wu M, Adamson D H, Register R A and Chaikin P M 2006 Aluminum nanowire polarizing grids: fabrication and analysis Appl. Phys. Lett. 88 211114
    [62] Meng F, Chu J, Han Z and Zhao K 2007 The design of the sub-wavelength wire-grid polarizer IEEE-NANO 2007. 7th IEEE Conference on Nanotechnology 42–6
    [63] Ahn S, Yang J, Miller M, Ganapathisubramanian M, Menezes M, Choi, Xu F, Resnick D J, and Sreenivasan S V 2013 High performance wire grid polarizers using jet and flashTM imprint lithography Proc. of SPIE 8680 86800W
    [64] Wei A C, Shieh H P and Sze J R 2007 Study of effect of seam on wire-grid polarizer efficiency using rigorous coupled-wave analysis Jpn. J. Appl. Phys. 46 5379–82
    [65] Auton J P 1967 Infrared transmission polarizers by photolithography Appl. Optics 6 1023–7
    [66] Fink M 2009 Types of anti-reflective treatments and when to use them Photonics Online
    [67] Boer J H W G, Kroesen G M W, Zeeuw W and Hoog F J 1995 Improved polarizer in the infrared: two wire-grid polarizers in tandem Opt. Lett. 20 800–2
    [68] Wang J J, Walters F, Liu X, Sciortino P and Deng X 2007 High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids Appl. Phys. Lett. 90 061104
    [69] Khusnatdinov N, Doyle G, Miller M, Stacey N, Watts M and LaBrake D L 2006 Fabrication of nano and micro optical elements by step and flash imprint lithography Proc. of SPIE 6110 61100K
    [70] Chen L, Wang J J, Walters F, Deng X, Buonanno M, Tai S and Liu X 2007 58 nm half-pitch plastic wire-grid polarizer by nanoimprint lithography J. Vac. Sci. Technol. B 25 2564–7
    [71] Liu X, Deng X, Sciortino P Jr., Buonanno M, Walters F, Varghese R, Bacon J, Chen L, O’Brien N and Wang J J 2006 Large area, 38 nm half-pitch grating fabrication by using atomic spacer lithography from aluminum wire grids Nano Lett. 6 2723–7
    [72] Weber T, Käsebier T, Kley E B and Tünnermann A 2011 Broadband iridium wire grid polarizer for UV applications Opt. Lett. 36 445–7
    [73] Ahn S H, Kim J S and Guo L J 2007 Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate J. Vac. Sci. Technol. B 25 2388–91
    [74] Chen L, Wang J J, Walters F, Deng X, Buonanno M, Tai S and Liu X 2007 Large flexible nanowire grid visible polarizer made by nanoimprint lithography Appl. Phys. Lett. 90 063111
    [75] Kim T and Seo S 2009 The facile fabrication of a wire-grid polarizer by reversal rigiflex printing Nanotechnology 20 145305
    [76] Lee J H, Song Y W, Lee J G, Ha J, Hwang K H and Zang D S 2008 Optically bifacial thin-film wire-grid polarizers with nano-patterns of a graded metal-dielectric composite layer Opt. Express 16 16867–76
    [77] Schnabel B, Kley E B and Wyrowski F 1999 Study on polarizing visible light by subwavelength-period metal-stripe gratings Opt. Eng. 38 220–6
    [78] Stach M, Chang E C, Yang C Y and Lo C Y 2013 Post-lithography pattern modification and its application to a tunable wire grid polarizer Nanotechnology 24 115306
    [79] Kim S H, Park J D and Lee K D 2006 Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display Nanotechnology 17 4436–8
    [80] Meng F, Luo G, Maximov I, Montelius L, Chu J and Xu H 2011 Fabrication and characterization of bilayer metal wire-grid polarizer using nanoimprint lithography on flexible plastic substrate Microelectron. Eng. 88 3108–12
    [81] Park K S, Dang J M, Sung M M and Seo S M 2012 One-step fabrication of nanowire-grid polarizers using liquid-bridge-mediated nanotransfer molding Nanoscale Res. Lett. 7 351
    [82] Shin Y J, Pina-Hernandez C, Wu Y K, Ok J G and Guo L J 2012 Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting Nanotechnology 23 344018
    [83] Chen C M, An T P, Hung Y M and Sung C K 2011 Fabricating insertion structures for metallic wire grid polarizers by nanoimprint and CMP process Microelectron. Eng. 88 2135–40
    [84] Yu X J and Kwok H S 2003 Application of wire-grid polarizers to projection displays Appl. Optics 42 6335–41
    [85] Sergan T, Lavrentovich M, Kelly J, Gardner E and Hansen D 2002 Measurement and modeling of optical performance of wire grids and liquid-crystal displays utilizing grid polarizers J. Opt. Soc. Am. A 19 1872–85
    [86] Sun Y L, Mikolas D, Chang E C, Lin P T and Fu C C 2013 Lloyd's mirror interferometer using a single-mode fiber spatial filter J. Vac. Sci. Technol. B 31 021604
    [87] Wu C L, Yang C Y, An T P, Lin J W and Sung C K 2012 Anti-adhesion treatment for nanoimprint stamps using atmospheric pressure plasma CVD (APPCVD) Appl. Surf. Sci. 261 441–6
    [88] Nishino T, Fujii N, Miyake H, Yukawa T, Sakamoto J, Suzuki R, Kawata H and Hirai Y 2010 Metal liftoff process using solvent soluble resist by UV-NIL J. Photopolym Sci. Technol. 23 87–90
    [89] Kim H J et al 2009 Roll-to-roll manufacturing of electronics on flexible substrates using self-aligned imprint lithography (SAIL) J. Soc. Inf. Disp. 17 963-70
    [90] Kotter D K, Novack S D, Slafer W D, Pinhero P J 2010 Theory and manufacturing processes of solar nanoantenna electromagnetic collectors J. Sol. Energy Eng. Trans.-ASME 132 011014 
    [91] Kang M G, Park H J, Ahn S H and Guo L J 2010 Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells Sol. Energy Mater. Sol. Cells 94 1179–84
    [92] Schmitt H, Frey L, Ryssel H, Rommel M and Lehrer C 2007 UV nanoimprint materials: Surface energies, residual layers, and imprint quality J. Vac. Sci. Technol. B 25 785–90
    [93] Heyderman L J, Schift H, David C, Gobrecht J, Schweizer T 2000 Flow behaviour of thin polymer films used for hot embossing lithography Microelectron. Eng. 54 229–45
    [94] Bäumer S 2005 Handbook of Plastic Optics (Weinheim: Wiley-VCH) 109–47
    [95] Karabacak T 2011 Thin-film growth dynamics with shadowing and re-emission effects J. Nanophotonics 5 052501
    [96] Ryu H, Yoon S J and Kim D 2008 Influence of surface roughness on the polarimetric characteristics of a wire-grid grating polarizer Appl. Optics 47 5715–21
    [97] Pang Y T, Meng G W, Fang Q and Zhang L D 2003 Silver nanowire array infrared polarizers Nanotechnology 14 20–4
    [98] Karabacak T, Guclu H and Yuksel M 2009 Network behavior in thin film growth dynamics Phys. Rev. B 79 195418
    [99] Pelliccione M and Lu T M 2007 Evolution of Thin Film Morphology: Modeling and Simulations (New York: Springer)
    [100] Semaltianos N G 2001 Thermally evaporated aluminnum thin films Appl. Surf. Sci. 183 223–9
    [101] Bordo K and Rubahn H G 2012 Effect of deposition rate on structure and surface morphology of thin evaporated al films on dielectrics and semiconductors Mater. Sci.-Medzg. 18 313–7
    [102] Hass G and Waylonis J E 1961 Optical constants and reflectance and transmittance of evaporated aluminum in the visible and ultraviolet J. Opt. Soc. Am. 51 719–22
    [103] Johnston R G, Canfield L R and Madden R P 1967 Reflective scattering from substrates and evaporated films in the far ultraviolet Appl. Optics 6 719–22
    [104] Colburn M et al 1999 Step and flash imprint lithography: a new approach to high-resolution patterning Proc. of SPIE 3676 379–89
    [105] Chou S Y, Krauss PR, Zhang W, Guo L and Zhuang L 1997 Sub-10 nm imprint lithography and applications J. Vac. Sci. Technol. B 15 2897–904
    [106] Michel B et al 2001 Printing meets lithography: Soft approaches to high-resolution patterning IBM J. Res. Dev. 45 697–719 
    [107] Chang J H, Cheng F S, Chao C C, Weng Y C and Yan S Y 2005 Direct imprinting using soft mold and gas pressure for large area and curved surfaces J. Vac. Sci. Technol. A 23 1687–90
    [108] Li Z et al 2009 Hybrid nanoimprint-soft lithography with sub-15 nm resolution Nano Lett. 9 2306–10
    [109] Koo N, Bender M, Plachetka U, Fuchs A, Wahlbrink T, Bolten J and Kurz H 2007 Improved mold fabrication for the definition of high quality nanopatterns by Soft UV-Nanoimprint lithography using diluted PDMS material Microelectron. Eng. 84 904–8
    [110] Miller R, Glinsner T, Kreindl G, Lindner P and Wimplinger M 2009 Industrial Applications Demanding Low and High Resolution Features Realized by Soft UV-NIL and Hot Embossing Proc. of SPIE 7271 72712J
    [111] Viheriälä J, Viljanen M R, Kontio J, Leinonen T, Tommila J, Dumitrescu M, Niemi T and Pessa M 2009 Soft stamp UV-nanoimprint lithography for fabrication of laser diodes Proc. of SPIE 7271 72711O
    [112] Koo N, Plachetka U, Otto M, Bolten J, Jeong J, Lee E and Kurz H 2008 The fabrication of a flexible mold for high resolution soft ultraviolet nanoimprint lithography Nanotechnology 19 225304
    [113] Barbero D R, Saifullah M S M, Hoffmann P, Mathieu H J, Anderson D, Jones G A. C, Welland M E and Steiner U 2007 High resolution nanoimprinting with a robust and reusable polymer mold Adv. Funct. Mater. 17 2419–25
    [114] Saint-Gobain Performance Plastics Corporation Norton® ETFE Fluoropolymer Film Datasheets
    [115] Schulz H, Wissen M, Bogdanski N, Scheer H C, Mattes K and Friedrich Ch 2006 Impact of molecular weight of polymers and shear rate effects for nanoimprint lithography Microelectron. Eng. 83 259–80
    [116] Schaffer E, Harkema S, Roerdink M, Blossey R and Steiner U 2003 Morphological instability of a confined polymer film in a thermal gradient Macromolecules 36 1645–1655
    [117] Bogdanski N, Schulz H, Wissen M, Scheer H C 2004 Dynamic mask defects in hot embossing lithography Proc. of SPIE 5504 197–203
    [118] Suo Z and Liang J 2001 Theory of lithographically-induced self-assembly Appl. Phys. Lett. 78 3971–3
    [119] Deshpande P, Sun X and Chou S Y 2001 Observation of dynamic behavior of lithographically induced self-assembly of supramolecular periodic pillar arrays in a homopolymer film Appl. Phys. Lett. 79 1688–90
    [120] Wu Lin and Chou S Y 2003 Dynamic modeling and scaling of nanostructure formation in the lithographically induced self-assembly and self-construction Appl. Phys. Lett. 82 3200–2
    [121] Hsieh C W and Sung C K 2007 Atomic-scale friction in direct imprinting process: molecular dynamics simulation Jpn. J. Appl. Phys. 46 6387–90
    [122] Morecroft D, Yang Schuster J S and Berggren K K 2009 Sub-15 nm nanoimprint molds and pattern transfer J. Vac. Sci. Technol. B 27 2837–40
    [123] Ahn S, Choi M, Bae H, Lim J, Myung H, Kim H and Kang S 2007 Design and fabrication of micro optical film by ultraviolet roll imprinting Jpn. J. Appl. Phys. 46 5478–84
    [124] Ting C J, Chen C F and Chou C P 2009 Subwavelength structures for broadband antireflection application Opt. Commun. 282 434–8
    [125] Ting C J, Chang F Yu, Chen C F and Chou C P 2008 Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process J. Micromech. Microeng. 18 075001
    [126] Yao C H, Chang C H, Hsieh C W and Sung C K 2010 Effects of mold shape and sidewall roughness on nanoimprint by molecular dynamics simulation Microelectron. Eng. 87 864–8
    [127] Zhou Y, Luo G, Asbahi M, Eriksson T, Keil M, Ring J, Carlberg P, Jiawook Rand Heidari B 2012 A method for metallic stamp replication using nanoimprinting and electroforming techniques Microelectron. Eng. 91 112–20
    [128] Heyderman L J, Schift H, David C, Ketterer B, Auf der Maur M and Gobrecht J 2001 Nanofabrication using hot embossing lithography and electroforming Microelectron. Eng. 57–58 375–80
    [129] Hirai Y, Harada S, Isaka S, Kobayashi M and Tanaka Y 2002 Nano-Imprint Lithography Using Replicated Mold by Ni Electroforming Jpn. J. Appl. Phys. 41 4186–9
    [130] Hong S H, Lee J H and Lee H 2007 Fabrication of 50 nm patterned nickel stamp with hot embossing and electroforming process Microelectron. Eng. 84 977–9
    [131] Ahn S H and Guo L J 2008 High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates Adv. Mater. 20 2044–9
    [132] Taniguchi J and Aratani M 2009 Fabrication of a seamless roll mold by direct writing with an electron beam on a rotating cylindrical substrate J. Vac. Sci. Technol. B 27 2841–5
    [133] Taniguchi J, Unno N and Maruyama H 2011 Large-diameter roll mold fabrication method using a small-diameter quartz roll mold and UV nanoimprint lithography J. Vac. Sci. Technol. B 29 06FC08
    [134] Unno N and Taniguchi J 2011 Fabrication of the metal nano pattern on plastic substrate using roll nanoimprint Microelectron. Eng. 88 2149–53
    [135] Chen L S, Yen J Y, Chen Y P, Wang L, Chung T T, Lin H I, Chen P H and Chang S H 2011 Longitudinal stitching of sub-micron periodic fringes on a roller Microelectron. Eng. 88 3235–43
    [136] Watts M.P.C. 2008 Strategies for low cost imprint molds Proc. SPIE 7039 70390A
    [137] Haatainen T, Majander P, Riekkinen T and Ahopelto J 2006 Nickel stamp fabrication using step & stamp imprint lithography Microelectron. Eng. 83 948–50
    [138] Lindblom M, Hertz H M and Holmberg A 2007 SU-8 plating mold for high-aspect-ratio nickel zone plates Microelectron. Eng. 84 1136–9
    [139] Luo J K, Pritschow M, Flewitt A J, Spearing S M, Fleck N A and Milnea W I 2006 Effects of process conditions on properties of electroplated ni thin films for microsystem applications J. Electrochem. Soc. 153 D155–61
    [140] Menz W, Mohr J and Paul O 2001 Microsystem Technology (Weinheim: WILEY-VCH Verlag GmhH) 316–23
    [141] Kim S H 2010 Mismatch strain and residual stress of freestanding electroplated Ni thin film Jpn. J. Appl. Phys. 49 010214
    [142] Allen D M, Duclos N, Garbutt I, Saumer M, Dhum Ch, Schmitt M and Hoffmann J E 2006 The effects of additives on the physical properties of electroformed nickel and on the stretch of photoelectroformed nickel components Dans Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS - DTIP 2006 (Stresa, Italy)
    [143] Choi D S, Yoo Y E, Seo Y H, Lee J H, Je T J and Whang K H 2005 100nm-scale electroplated nickel stamper fabricated by e-beam lithography on chrome/quartz mask Proc. of SPIE 5650 324–7
    [144] Thies A, Schanz G, Walch E and Konys J 1997 Chemical deposition of metals for the formation of microstructures: An alternative method to galvanoforming? Electrochim. Acta 42 3033–40
    [145] Kouba J, Kubenz M., Mai A, Ropers G, Eberhardt W and Loechel B 2006 Fabrication of nanoimprint stamps for photonic crystals, Journal of Physics: Conference Series 34 897–903
    [146] Peroz C, Dhuey S, Cornet M, Vogler M, Olynick D and Cabrini S 2012 Single digit nanofabrication by step-and-repeat nanoimprint lithography Nanotechnology 23 015305
    [147] Chen L Q, Chan-Park M B, Yan Y H, Zhang Q, Li C M and Zhang J 2007 High aspect ratio silicon nanomoulds for UV embossing fabricated by directional thermal oxidation using an oxidation mask Nanotechnology 18 355307
    [148] Kima I and Mentone P F 2006 Electroformed nickel stamper for light guide panel in LCD back light unit Electrochim. Acta 52 1805–9
    [149] Gamburg Y D and Zangari G 2011 Theory and practice of metal electrodeposition (Springer: New York) 1–25
    [150] Hilley M E, Larson J A, Jatczak C F and Ricklefs R E 1971 Residual stress measurements by X-ray diffraction SAE Information Report J 784a (SAE: Pennsylvania)
    [151] Prevéy P S 1986 X-ray diffraction residual stress techniques Metals Handbook 10 (American Society for Metals: Metals Park, OH) 380–92
    [152] Riedel W 1991 Electroless Nickel Plating (ASM International: Metals Park, OH) 81–2
    [153] Yao P H, Chung C J, Wu C L and Chen C H 2012 Polarized backlight with constrained angular divergence for enhancement of light extraction efficiency from wire grid polarizer Opt. Express 20 4819–29
    [154] JEOL JBX-9500FS Electron Beam Lithography System http://www.jeol.co.jp/en/products/detail/JBX-9500FS.html (accessed on August 12, 2013)
    [155] Choi J, Nordquist K, Cherala A, Casoose L, Gehoski K, Dauksher W J, Sreenivasan S V and Resnick D J 2005 Distortion and overlay performance of UV step and repeat imprint lithography Microelectron. Eng. 78–79 633–40
    [156] Cho Y, Kwon S, Seo J W, Kim J G, Cho J W, Park J W, Kim H and Lee S 2009 Development of large area nano imprint technology by step and repeat process and pattern stitching technique Microelectron. Eng. 86 2417–22
    [157] Abe M, Kitada T, Ito N, Tanaka T, Ataka M, Kishiro T and Matsui S 2011 Fabrication of Large Area Seamless Roller Mold using Fast EB Lithography (rEBL) for R2R Process International Conference on Micro and Nano Engineering MNE 2011 (Berlin, Germany)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE