研究生: |
戴唯倫 Tai, Wei-Lun |
---|---|
論文名稱: |
應用隨機邊界分析法建構之投資組合績效分析 The Performance of Portfolios Formed by Stochastic Frontier Analysis |
指導教授: |
黃裕烈
Huang, Yu-Lieh |
口試委員: |
徐之強
徐士勛 |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 計量財務金融學系 Department of Quantitative Finance |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 隨機邊界分析法 、投資組合 、經營效率 |
外文關鍵詞: | stochastic frontier analysis, portfolio, operational efficiency |
相關次數: | 點閱:79 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文使用隨機邊界分析法(stochastic frontier analysis,SFA)量化776間臺灣證交所上市公司之經營效率,研究期間為2018年至2023年共24個季度,每季會從各產業中挑選效率值排名前10%之公司作為當季之投資標的,以均權方式建構投資組合。績效分析結果顯示應用SFA建構之投資組合中,有14期的報酬率大於加權指數,占比為58%,餘下10期投資組合中,也僅有一期的報酬率低於加權指數5%以上。投資組合之平均報酬率與累積報酬率同樣優於加權指數。再以Sharpe ratio、Treynor index、Jensen index三項考慮風險因素之指標進行績效評估之後,發現投資組合之Sharpe ratio、Treynor index皆優於大盤,惟Jensen index的結果與大盤持平,顯示該投資策略之有效性。
This paper uses the Stochastic Frontier Analysis (SFA) method to evaluate the operational efficiency of 776 companies listed on the Taiwan Stock Exchange over a period of 24 quarters, from 2018 to 2023. Each quarter, we calculate the efficiency score of every listed company and select companies with the highest efficiency score in each industry as investment targets, which are then used to construct an equal-weighted portfolio. The empirical results suggest that the rate of returns of the portfolios formed by SFA exceeded that of the market in 14 out of the 24 quarters. Moreover, both the average rate of returns and the cumulative rate of returns of the portfolios formed by SFA exceeded those of the market. We also conduct an overall performance evaluation using Sharpe ratio, Treynor index, and Jensen index, which indicates that the portfolios formed by SFA once again outperformed the market in terms of both Sharpe ratio and Treynor index, while the Jensen index suggests that the performance of the SFA-constructed portfolios were on par with the market. Overall, these findings demonstrate that the performance of portfolios formed by SFA yield superior performance.
1. Aigner, Dennis, CA Knox Lovell, and Peter Schmidt. "Formulation and estimation of stochastic frontier production function models." Journal of econometrics 6.1 (1977): 21-37.
2. Alam, I. M. S. and R. C. Sickles, (1998). “The relationship between stock market returns and technical efficiency innovations: Evidence from the US airline industry.” Journal of Productivity Analysis, 9, 35– 51.
3. Alexakis, Christos, Theophano Patra, and Sunil Poshakwale. "Predictability of stock returns using financial statement information: evidence on semi-strong efficiency of emerging Greek stock market." Applied Financial Economics 20.16 (2010): 1321-1326.
4. Battese, George E., and Tim J. Coelli. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data." Journal of econometrics 38.3 (1988): 387-399.
5. Battese, George E., and Tim J. Coelli. "Frontier production functions, technical efficiency and panel data: with application to paddy farmers in India." Journal of productivity analysis 3 (1992): 153-169.
6. Battese, George Edward, and Tim J. Coelli. "A model for technical inefficiency effects in a stochastic frontier production function for panel data." Empirical economics 20 (1995): 325-332.
7. Bruder, B. and T.Roncalli, (2012).“Managing risk exposures using the risk budgeting approach.” Working Paper.
8. Charnes, A., W. W. Cooper, and E. Rhodes, (1978). “Measuring the efficiency of decision makingunits.” European Journal of Operational Research, 2, 429-444.
9. Chen, Hsin‐Hung. "Stock selection using data envelopment analysis." Industrial Management & Data Systems 108.9 (2008): 1255-1268.
10. Coelli, T. J., “A Guide to FRONTIER Version 4.1: A Computer Program for Stochastic Frontier Production and Cost Function Estimation”, CEPA Working Papers, No. 7/96, Department of Econometrics, University of New England, 1996.
11. Demsetz, H. “Industry Structure, Market Rivalry, and Public Policy.” Journal of Law and Economics, 16 (1973), 1–9.
12. Farrell, Michael James. "The measurement of productive efficiency." Journal of the royal statistical society: series A (General) 120.3 (1957): 253-281.
13. Frijns, Bart, Dimitris Margaritis, and Maria Psillaki. "Firm efficiency and stock returns." Journal of Productivity Analysis 37 (2012): 295-306.
14. Jondrow, James, et al. "On the estimation of technical inefficiency in the stochastic frontier production function model." Journal of econometrics 19.2-3 (1982): 233-238.
15. Lensink, Robert, and Aljar Meesters. "Institutions and bank performance: A stochastic frontier analysis." Oxford Bulletin of Economics and statistics 76.1 (2014): 67-92.
16. Lin, Boqiang, and Houyin Long. "A stochastic frontier analysis of energy efficiency of China's chemical industry." Journal of Cleaner Production 87 (2015): 235-244.
17. Markowitz, H. (1952), “Portfolio selection,” The Journal of Finance,7, 77–91.
18. Meeusen, W.and van den Broeck, J.(1977) Efficiency Estimation from Cobb-Douglas Production Function with Composed Error, International Economic Review 18(2), P435~444.
19. Ou, Jane A., and Stephen H. Penman. "Financial statement analysis and the prediction of stock returns." Journal of accounting and economics 11.4 (1989): 295-329.
20. Peltzman, Sam. "The gains and losses from industrial concentration." The Journal of Law and Economics 20.2 (1977): 229-263.
21. Schmidt, Peter, and Robin C. Sickles. "Production frontiers and panel data." Journal of Business & Economic Statistics 2.4 (1984): 367-374.
22. Stevenson, Rodney E. "Likelihood functions for generalized stochastic frontier estimation." Journal of econometrics 13.1 (1980): 57-66.
23. Tsai, Pei-Fen, Cheng-Han Gao, and Shyan-Ming Yuan. "Stock Selection Using Machine Learning Based on Financial Ratios." Mathematics 11.23 (2023): 4758.