簡易檢索 / 詳目顯示

研究生: 陳建凱
Chen, Chien-Kai
論文名稱: 形狀及大小可調控的硫化錳奈米晶體之光學、磁性及電性的晶面效應研究
Shape- and Size-Tunable MnS Nanocrystals Displaying Facet-Dependent Optical, Magnetic, and Electrical Conductivity Properties
指導教授: 黃暄益
Huang, Hsuan-Yi
口試委員: 郭俊宏
Kuo, Chun-Hong
譚至善
Tan, Chih-Shan
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 69
中文關鍵詞: 硫化錳材料合成材料鑑定晶面效應
外文關鍵詞: Manganese sulfide, Material synthesis, Material characterization, Facet effect
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們以低溫且環保的方式在水相中合成出了立方晶系的硫化錳奈米晶體,然後發現以注射法合成出來的奈米晶體尺寸比較小,而以一鍋法合成出來的奈米晶體尺寸比較大。在深入探討反應濃度與溫度對奈米晶體的形狀及大小控制的關係之後,成功合成出了可調控尺寸為35奈米到323奈米的立方體,以及可調控尺寸為65奈米到630奈米的八面體。再來以掃描式電子顯微鏡、粉末X射線繞射儀、固態紫外光-可見光吸收光譜儀、高解析度穿透式電子顯微鏡、原子力顯微鏡以及超導量子干涉元件磁量儀去進行材料的鑑定與分析後,我們可以觀察到硫化錳奈米材料在光學性質上具有明顯的晶面效應以及超越量子侷限的尺寸效應;在導電性質上也具有明顯的晶面效應,硫化錳{100}面呈現導體的性質,而{111}則呈現絕緣體的性質;在磁性上也可以看出在幾乎同樣體積的情況下暴露出{100}面的立方體磁性比暴露出{111}面的八面體好。


    We have synthesized rock-salt phase manganese sulfide nanocrystals in an environmentally friendly manner using a low-temperature approach in an aqueous solution. The nanocrystals synthesized by the injection method have smaller sizes compared to those synthesized by the one-pot method. After varying the reagent concentration and temperature, nanocubes with tunable sizes from 35 nm to 323 nm, as well as octahedra with adjustable sizes from 65 nm to 630 nm, were obtained.
    Subsequently, we conducted materials characterization using SEM, PXRD, UV-Vis DRS, HRTEM, and SQUID. MnS nanocrystals exhibit significant facet-dependent optical properties far beyond quantum confinement dimensions. The {100} faces of a MnS cube show good electrical conductivity response, while the {111} faces of an octahedron is insulative. Cubes show higher magnetization behavior than octahedra, despite their nearly identical volumes.

    論文摘要-----i Abstract-----ii Acknowledgement-----iii Table of Contents-----iv List of Figures-----vi List of Schemes-----x List of Tables-----x 1.Introduction-----1 1.1 Facet-Dependent and Size-Dependent Properties of Semiconductor Crystals.-----1 1.1.1 Facet-Dependent of Electrical Conductivity of Semiconductor Crystals-----1 1.1.2 Facet-Dependent and Size-Dependent of Optical Properties of Semiconductor Crystals-----8 1.2 Manganese Sulfide (MnS)-----10 1.2.1 Synthesis of α-MnS Crystals in Organic Phase-----11 1.2.2 Synthesis of α-MnS Crystals in Aqueous Phase-----14 1.2.3 Optical Properties of MnS Crystals-----17 1.2.4 Magnetic Properties of MnS Crystals-----18 2. Motivation-----21 3. Experimental Section-----22 3.1 Chemicals-----22 3.2 Instrument-----22 3.3 System 1: Injection Method to Make Size-Tunable MnS Nanocubes and Octahedra-----23 3.4 System 2: One-Pot Method to Grow Shape-Tunable MnS Crystals-----25 3.5 Electrical Conductivity Measurements-----28 4. Results and Discussion-----29 4.1.1. Synthesis of α-MnS Crystals at Low Temperature-----29 4.1.2. Synthesis of Size-Controlled α-MnS Cubes-----31 4.1.3. Synthesis of Size-Controlled α-MnS Octahedra-----33 4.2.1. Synthesis of Phase-Controlled MnS by Varying Ammonia Concentration-----36 4.2.2. Large α-MnS Crystals with Morphological Evolution-----38 4.3 XRD Characterization of Different α-MnS Crystals-----40 4.4 HR-TEM and SAED Pattern Characterization-----41 4.5 Optical Properties of α-MnS-----48 4.6 Wurtzite Phase MnS Crystals-----51 4.7 Electrical Conductivity Measurements-----55 4.8 Magnetic Properties of MnS Crystals-----58 5. Conclusion-----62

    1. Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity. J. Am. Chem. Soc. 2012, 134, 1261-1267.
    2. Huang, M. H.; Rej, S.; Chiu, C.-Y. Facet-Dependent Optical Properties Revealed through Investigation of Polyhedral Au‒Cu2O and Bimetallic Core-Shell Nanocrystals. Small 2015, 11, 2716-2726.
    3. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals. Nano Lett 2015, 15, 2155-2160.
    4. Chan, S.-J.; Kao, J.-C.; Chou, P.-J.; Lo, Y.-C.; Chou, J.-P.; Huang, M. H. 4-Nitrophenylacetylene-modified Cu2O Cubes and Rhombic Dodecahedra Showing Superior Photocatalytic Activity through Surface Band Structure Modulation. J. Mater. Chem. C 2022, 10, 8422-8431.
    5. Hsieh, M.-H.; Su, Z.-H.; Wu, E.-T.; Huang, M. H. Photocatalytic Aryl Sulfide Oxidation Using 4-Nitrophenylacetylene- Modified Cu2O Crystals. ACS Appl. Mater. Interfaces 2023, 15, 11662–11669.
    6. Su, Z.-H.; Hsieh, M.-H.; Chen, Z.-L.; Dai, W.-T.; Wu, E.-T.; Huang, M. H. Aqueous Phase Photocatalytic Hydroxylation of Arylboronic Acids Using Polyhedral Cu2O Crystals. Chem. Mater. 2023, 35, 2782-2789.
    7. Chen, Y.-J.; Chiang, Y.-W.; Huang, M. H. Synthesis of Diverse Ag2O Crystals and Their Facet-Dependent Photocatalytic Activity Examination. ACS Appl. Mater. Interfaces 2016, 8, 19672-19679.
    8. Tan, C.-S.; Chen, Y.-J.; Hsia, C.-F.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Silver Oxide Crystals. Chem. Asian J. 2017, 12, 293-297.
    9. Chen, H.-S.; Wu, S.-C.; Huang, M. H. Direct Synthesis of Size-Tunable PbS Nanocubes and Octahedra and The pH Effect on Crystal Shape Control. Dalton Trans. 2015, 44, 15088-15094.
    10. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of PbS Nanocrystals. Chem. Mater. 2016, 28, 1574-1580.
    11. Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H. Synthesis of Ag3PO4 Crystals with Tunable Shapes for Facet-Dependent Optical Property, Photocatalytic Activity, and Electrical Conductivity Examinations. ACS Appl. Mater. Interfaces 2017, 9, 39086-39093.
    12. Hsieh, P.-L.; Naresh, G.; Huang, Y.-S.; Tsao, C.-W.; Hsu, Y.-J.; Chen, L.-J.; Huang, M. H. Shape-Tunable SrTiO3 Crystals Revealing Facet-Dependent Optical and Photocatalytic Properties. J. Phys. Chem. C 2019, 123, 13664-13671.
    13. Hsieh, P.-L.; Madasu, M.; Hsiao, C.-H.; Peng, Y.-W.; Chen, L.-J.; Huang, M. H. Facet-Dependent and Adjacent Facet-Related Electrical Conductivity Properties of SrTiO3 Crystals. J Phys. Chem. C 2021, 125, 10051-10056.
    14. Chen, J.-W.; Pal, A.; Chen, B.-H.; Kumar, G.; Chatterjee, S.; Peringeth, K.; Lin, Z.-H.; Huang, M. H. Shape-Tunable BaTiO3 Crystals Presenting Facet-Dependent Optical and Piezoelectric Properties. Small 2023, 19, 2205920.
    15. Huang, J.-Y.; Madasu, M.; Huang, M. H. Modified Semiconductor Band Diagrams Constructed from Optical Characterization of Size-Tunable Cu2O Cubes, Octahedra, and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122 , 13027-13033.
    16. Huang, M. H.; Naresh, G.; Chen, H.-S. Facet-Dependent Electrical, Photocatalytic, and Optical Properties of Semiconductor Crystals and Their Implications for Applications. ACS Appl. Mater. Interfaces 2018, 10, 4-15.
    17. Huang, M. H. Facet-Dependent Optical Properties of Semiconductor Nanocrystals. Small 2019, 15, 1804726.
    18. Huang, M. H. Semiconductor Nanocrystals Possessing Broadly Size- and Facet-Dependent Optical Properties. J. Chin. Chem. Soc. 2021, 68, 45-50.
    19. Tan, C.-S.; Huang, M. H. Surface-Dependent Band Structure Variations and Bond-Level Deviations in Cu2O. Inorg. Chem. Front. 2021, 8, 4200-4208.
    20. Lee, A.-T.; Tan, C.-S.; Huang, M. H. Current Rectification and Photo-Responsive Current Achieved through Interfacial Facet Control of Cu2O-Si Wafer Heterojunctions. ACS Cent. Sci. 2021, 7, 1929-1937.
    21. Thoka, S.; Lee, A.-T.; Huang, M. H. Scalable Synthesis of Size-Tunable Small Cu2O Nanocubes and Octahedra for Facet-Dependent Optical Characterization and Pseudomorphic Conversion to Cu Nanocrystals. ACS Sustain. Chem. Eng. 2019, 7, 10467-10476.
    22. Hsiao, C.-H.; Chen, C.-W.; Chen, H.-S.; Hsieh, P.-L.; Chen, Y.-A.; Huang, M. H. Formation of Size-Tunable CdS Rhombic Dodecahedra. J. Mater. Chem. C 2021, 9, 5992-5997.
    23. Alanazi, A. M.; McNaughter, P. D.; Alam, F.; Vitorica-yrezabal, I. J.; Whitehead, G. F. S.; Tuna, F.; O'Brien, P.; Collison, D.; Lewis, D. J. Structural Investigations of Alpha-MnS Nanocrystals and Thin Films Synthesized from Manganese(II) Xanthates by Hot Injection, Solvent-Less Thermolysis, and Doctor Blade Routes. ACS Omega 2021, 6, 27716-27725.
    24. Wonglakhon, T.; Zahn, D. Interaction Potentials for Modelling GaN Precipitation and Solid State Polymorphism. J. Phys.: Condens. Mat. 2020, 32, 205401.
    25. Li, N. N.; Zhang, Y.; Cheng, R. Q.; Wang, J. J.; Li, J.; Wang, Z. X.; Sendeku, M. G.; Huang, W. H.; Yao, Y. Y.; Wen, Y.; et al. Synthesis and Optoelectronic Applications of a Stable p-Type 2D Material: Alpha-MnS. ACS Nano 2019, 13, 12662-12670.
    26. Li, X.; Yang, J. Y.; Jiang, Q. H.; Lai, H.; Li, S. P.; Tan, Y.; Chen, Y.; Li, S. W. Perovskite Solar Cells Employing an Eco-Friendly and Low-Cost Inorganic Hole Transport Layer for Enhanced Photovoltaic Performance and Operational Stability. J. Mater. Chem. A 2019, 7, 7065-7073.
    27. Xu, X. J.; Ji, S. M.; Gu, M. Z.; Liu, J. In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 20957-20964.
    28. Lee, S.; Song, M.; Kim, S.; Mathew, V.; Sambandam, B.; Hwang, J. Y.; Kim, J. High Lithium Storage Properties in a Manganese Sulfide Anode via an Intercalation-Cum-Conversion Reaction. J. Mater. Chem. A 2020, 8 , 17537-17549.
    29. Pham, D. T.; Sambandam, B.; Kim, S.; Jo, J.; Kim, S.; Park, S.; Mathew, V.; Sun, Y. K.; Kim, K.; Kim, J. Dandelion-Shaped Manganese Sulfide in Ether-Based Electrolyte for Enhanced Performance Sodium-Ion Batteries. Commun. Chem. 2018, 1, 83.
    30. Puglisi, A.; Mondini, S.; Cenedese, S.; Ferretti, A. M.; Santo, N.; Ponti, A. Monodisperse Octahedral Alpha-MnS and MnO Nanoparticles by the Decomposition of Manganese Oleate in the Presence of Sulfur. Chem. Mater. 2010, 22 , 2804-2813.
    31. Tian, Q. W.; Tang, M. H.; Jiang, F. R.; Liu, Y. W.; Wu, J. H.; Zou, R. J.; Sun, Y. G.; Chen, Z. G.; Li, R. W.; Hu, J. Q. Large-Scaled Star-Shaped Alpha-MnS Nanocrystals with Novel Magnetic Properties. Chem. Commun. 2011, 47, 8100-8102.
    32. Yang, X. Y.; Wang, Y. N.; Sui, Y. M.; Huang, X. L.; Cui, T.; Wang, C. Z.; Liu, B. B.; Zou, G. T.; Zou, B. Size-Controlled Synthesis of Bifunctional Magnetic and Ultraviolet Optical Rock-Salt MnS Nanocube Superlattices. Langmuir 2012, 28, 17811-17816.
    33. Michel, F. M.; Schoonen, M. A. A.; Zhang, X. V.; Martin, S. T.; Parise, J. B. Hydrothermal Synthesis of Pure Alpha-Phase Manganese(II) Sulfide without the Use of Organic Reagents. Chem. Mater. 2006, 18, 1726-1736.
    34. Gui, Y. C.; Qian, L. W.; Qian, X. F. Hydrothermal Synthesis of Uniform Rock Salt (Alpha-) MnS Transformation from Wurtzite (Gamma-) MnS. Mater. Chem. Phys. 2011, 125, 698-703.
    35. Huffman, D. R.; Wild, R. L. Optical Properties of Alpha-MnS. Phys. Rev. 1967, 156, 989.
    36. Goede, O.; Heimbrodt, W.; Weinhold, V.; Schnurer, E.; Eberle, H. G. Optical Study of Phase-Transition from Tetrahedrally into Octahedrally Coordinated MnS. Phys. Status Solidi B 1987, 143, 511-518.
    37. Sechovský, V. Magnetism in Solids: General Introduction. Encyclopedia Mater.Sci. Technol. 2001, 5018-5032.

    QR CODE