簡易檢索 / 詳目顯示

研究生: 陳星宏
Chan, Sing-Hong
論文名稱: 二維Ising模型的有限尺度標度分析
Finite Size Scaling Analysis of 2D Ising Model
指導教授: 陳柏中
Chen, Po-chung
口試委員: 黃靜瑜
Huang, Ching-Yu
黃一平
Huang, Yi-Ping
高英哲
Kao, Ying-Jer
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 51
中文關鍵詞: 有限尺度標度分析張量網絡Ising模型臨界狀態共行結構
外文關鍵詞: finite size scaling, tensor network, Ising model, critical behaviour, conformal structure
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文對二維鐵磁性的Ising模型進行了有限尺度標度分析。
    臨界現象的發生需要系統在熱力學極限上,即系統大小為無限大。但在多數情況下,數值模擬只能計算有限大小系統的物理量。而有限尺度標度分析提供了一個能從有限大小的物理量去逼近無限大系統下的臨界現象。
    在計算上,張量網絡的方法被用來計算有限大小系統的各種物理量。兩種實體空間的重整化群的方法被用來分析,即higher-order tensor renormalization group (HOTRG)和core-tensor renormalization group (CTRG).
    透過有限尺度標度分析,我們可以很好地得到系統的臨界溫度、臨界指數,以及其共行結構。


    In this paper, we investigate the finite size scaling of the 2D ferromagnetic Ising model.
    Critical behavior only occurs at the thermodynamic limit, which is when the system size approaches infinity. However in most cases, numerical simulations can only compute quantities for finite size systems. Finite size scaling analysis provides us with a method to approach critical behavior using quantities in finite size systems.
    For computation, we employ the tensor network method to calculate various quantities for finite size systems. The data are analysed using two types of real space tensor renormalization group methods: higher-order tensor renormalization group (HOTRG) and core-tensor renormalization group (CTRG),.
    We demonstrate that finite size analysis enables us to accurately extract critical temperature, critical exponents, and conformal structure of the system.

    Abstract (Chinese) --------------------------------------------------------- I Abstract ------------------------------------------------------------------ II Contents ------------------------------------------------------------------III List of Figures ------------------------------------------------------------ V List of Tables ------------------------------------------------------- ---VIII 1 Introduction ------------------------------------------------------------- 1 1.1 Phase Transition ------------------------------------------------------- 1 1.2 Finite Size Scaling ---------------------------------------------------- 2 1.2.1 Crossing Point Analysis ---------------------------------------------- 3 1.2.2 Fitting at Critical Point -------------------------------------------- 4 1.3 2D Ising Model --------------------------------------------------------- 5 1.4 Tensor Network Method -------------------------------------------------- 6 1.5 Transfer Matrix -------------------------------------------------------- 8 1.6 Conformal Tower --------------------------------------------------------11 1.7 Entanglement Entropy ---------------------------------------------------14 2 Methodology --------------------------------------------------------------17 2.1 Higher-order Tensor Renormalization Group ------------------------------17 2.2 Core-tensor Renormalization Group --------------------------------------19 2.3 1-site Translation Operator in Tensor Network --------------------------22 2.4 Improvements for Tensor Network Renormalization Group ------------------24 3 Numerical Results --------------------------------------------------------26 3.1 Crossover Length Scale -------------------------------------------------27 3.2 Correlation Length Per Site --------------------------------------------30 3.3 Spontaneous Magnetization ----------------------------------------------33 3.4 Specific Heat Per Site -------------------------------------------------37 3.5 Conformal Tower --------------------------------------------------------38 3.6 Entanglement Entropy ---------------------------------------------------40 3.7 Eigenenergy ------------------------------------------------------------42 4 Conclusion ---------------------------------------------------------------45 5 Appendix -----------------------------------------------------------------47 5.1 Derivation for Crossing Point Analysis ---------------------------------47 Bibliography ---------------------------------------------------------------50

    [1] John L. Cardy. Operator content of two-dimensional conformally invariant theories. Nuclear Physics B, 270:186–204, 1986.
    [2] Philippe Christe, Malte Henkel, and John Cardy. iintroduction to conformal invariance and its applications to critical phenomena/i. Physics Today, 47(9):94–95, sep 1994.
    [3] Markus Hauru, Glen Evenbly, Wen Wei Ho, Davide Gaiotto, and Guifre Vidal. Topological conformal defects with tensor networks. Physical Review B, 94(11), sep 2016.
    [4] Wangwei Lan and Glen Evenbly. Tensor renormalization group centered about a core tensor. Physical Review B, 100(23), dec 2019.
    [5] Xinliang Lyu, RuQing G. Xu, and Naoki Kawashima. Scaling dimensions from linearized tensor renormalization group transformations. Physical Review Research, 3(2), apr 2021.
    [6] Ashley Milsted and Guifre Vidal. Extraction of conformal data in critical quantum spin chains using the koo-saleur formula. Physical Review B, 96(24), dec 2017.
    [7] Hidetoshi Nishimori and Gerardo Ortiz. Elements of Phase Transitions and Critical Phenomena. Oxford University Press, 12 2010.
    [8] Lars Onsager. Crystal statistics. i. a two-dimensional model with an orderdisorder transition. Phys. Rev., 65:117–149, Feb 1944.
    [9] B. Pirvu, G. Vidal, F. Verstraete, and L. Tagliacozzo. Matrix product states for critical spin chains: Finite-size versus finite-entanglement scaling. Physical Review B, 86(7), aug 2012.
    [10] Michael Plischke and Birger Bergersen. Equilibrium Statistical Physics. WORLD SCIENTIFIC, 3rd edition, 2006.
    [11] Anders W. Sandvik. Computational studies of quantum spin systems. AIP Conference Proceedings, 1297(1):135–338, 2010.
    [12] Anders W. Sandvik, Adolfo Avella, and Ferdinando Mancini. Computational studies of quantum spin systems. In AIP Conference Proceedings. AIP, 2010.
    [13] T. D. SCHULTZ, D. C. MATTIS, and E. H. LIEB. Two-dimensional ising model as a soluble problem of many fermions. Rev. Mod. Phys., 36:856–871, Jul 1964.
    [14] Hiroshi Ueda, Kouichi Okunishi, and Tomotoshi Nishino. Doubling of entanglement spectrum in tensor renormalization group. Physical Review B, 89(7), feb 2014.
    [15] Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T. Xiang. Coarsegraining renormalization by higher-order singular value decomposition. Physical Review B, 86(4), jul 2012.
    [16] C. N. Yang. The spontaneous magnetization of a two-dimensional ising model. Phys. Rev., 85:808–816, Mar 1952.

    QR CODE