簡易檢索 / 詳目顯示

研究生: 林偉恩
Lin, Wei-En
論文名稱: CoFe0.5-2.5MnTi0.5-2.5VZr與AlMgNi0.3-1.0TiZr 高熵儲氫合金之研究
Hydrogen Storage in CoFe0.5-2.5MnTi0.5-2.5VZr and AlMgNi0.3-1.0TiZr High-Entropy Alloys
指導教授: 陳瑞凱
Chen, Swe-Kai
葉均蔚
Yeh, Jien-Wei
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 158
中文關鍵詞: 儲氫高熵合金CoFexMnTiyVZr & AlMgNiwTiZr非晶化抑制元素PCIC14 Laves相介金屬化合物
外文關鍵詞: Hydrogen-storage high-entropy alloys, CoFexMnTiyVZr &, amorphization inhibitor, PCI, C14 Laves phase, Intermetallics
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究第一部份以等莫耳CoFeMnTiVZr多元高熵合金為基礎,以Fe與Ti變量 (Fex及Tiy合金) 作元素改質及溫度改變,以探討真空電弧熔煉鑄造態非等莫耳合金CoFexMnTiyVZr (簡稱E6合金) 的吸放氫行為。第二部份以創新的等莫耳含鎂AlMgNiTiZr高熵合金為基礎,以Ni變量作元素改質及溫度改變,探討輕型機械合金化AlMgNiwTiZr高熵合金 (簡稱E5合金) 的吸放氫行為。先以X光繞射儀分析晶體結構,掃描電鏡分析微結構,EDS測定合金組成,DSC量測金屬氫化物的放氫溫度,再以PCI及動力曲線,量測E5及E6合金吸放氫行為。
    重要結論如下: 鑄造態E6合金,最大儲氫量約2 wt%,平台壓集中在1 - 5 atm之間,t0.9 (達到最大儲氫量百分之九十所需的時間) 約在100秒以內,遲滯值約在1以內,晶粒大小吸氫前分布在17.1 nm - 50.3 nm,吸氫後分布在14.8 nm - 46.1 nm,體積膨脹率約在3 %以內,晶體結構主要為C14 Laves相,元素過度添加,皆有元素態析出,熱力學分析顯示,E6合金分布趨勢與AB2型合金相似。機械合金化E5合金,球磨八小時即已合金化,各元素分布均勻,最大儲氫量約1.5 wt%,動力學達飽和儲氫量時間較長、t0.9約10,000秒,平台壓分布於5 - 12 atm之間,晶體結構由數種介金屬化合物所構成,球磨時間越長以及Ni含量減少,越容易發生非晶結構,因此Ni在E5合金內為非晶化抑制元素。


    The first part of this study investigates behavior of hydrogen absorption and desorption of non-equal-molar vacuum-arc-remelted as-cast CoFexMnTiyVZr (E6 alloys) based on their equal-molar counterpart by varying x (Fex alloys) and y (Tiy alloys) contents as well as measuring temperature. The second part does the same things as the first part but only changing the alloys to mechanical-alloying (MA) light-weighted AlMgNiwTiZr (E5 alloys). Experiments include XRD, SEM, EDS, DSC, PCI, and kinetics of hydrogen absorption and desorption for determination of crystal structure, microstructure, phase composition, hydrogen desorption temperature, and behavior of hydrogen absorption and desorption of E6 and E5 alloys, respectively.
    Primary conclusions are summarized as follows: The as-cast E6 alloys possess maximal hydrogen storage capacity of 2 wt %, plateau pressure in PCIs of 1 – 5 atm, time to 90 % of maximal capacity, t0.9, of about 100 s, values of hysteresis of less than 1, grain size before and after hydrogen absorption cycle of 17.1 nm - 50.3 nm, and 14.8 nm - 46.1 nm, respectively, volume expansion mostly of less than 3 %, crystal structure of C14 Laves phase for both before and after cycle states, elemental precipitation for excessive addition of Fe and Ti, and similar distribution as the AB2 alloys in the thermodynamic ΔH vs. (H/M)max plot. MA-E5 alloys have become alloys after 8-h MA with homogeneous distribution of composition, and possess maximal hydrogen storage capacity of 1.5 wt %, plateau pressure in PCIs of 5 – 12 atm, t0.9 of about 10,000 s, crystal structure composed of several intermetallics, property of easy amorphization for prolonged MA and for alloys containing less amount of Ni. Therefore Ni is an amorphization inhibitor in E5 alloys.

    頁次 摘要 --------------------------------------------------------------------------------------------I Abstract ----------------------------------------------------------------------------------------II 目錄 -------------------------------------------------------------------------------------------III 圖目錄 ---------------------------------------------------------------------------------------VI 表目錄 -------------------------------------------------------------------------------------XIII Chapter 1: 前言 1 1-1 簡介---------------------------------------------------------------------------------------1 Chapter 2: 文獻回顧與基礎理論 5 2-1 儲氫合金的簡史與應用 -------------------------------------------------------5 2-2 各種儲氫材料的簡介 -----------------------------------------------------------8 2-2-1 金屬氫化物 -------------------------------------------------------------11 2-2-2 複合氫化物 -------------------------------------------------------------14 2-2-3 有基金屬骨架 (MOFs) -----------------------------------------------16 2-2-4 奈米管與碳材 ---------------------------------------------------------20 2-2-5 儲氫金屬氫化物薄膜 ----------------------------------------------21 2-3 各種儲氫合金簡介 ------------------------------------------------------------ 22 2-3-1 AB5 Type -------------------------------------------------------------------22 2-3-2 AB2 Type -------------------------------------------------------------------23 2-3-3 AB Type ---------------------------------------------------------------------25 2-3-4 A2B Type -------------------------------------------------------------------26 2-3-5 AB3 Type -------------------------------------------------------------------27 2-3-6 Other Type -----------------------------------------------------------------29 2-4 表面活化 --------------------------------------------------------------------------- 32 2-5 動力學曲線 ----------------------------------------------------------------------- 35 2-6 PCI曲線 --------------------------------------------------------------------------------38 2-7 van’t Hoff plot -------------------------------------------------------------------- 40 2-8 遲滯效應 --------------------------------------------------------------------------- 41 2-9 Laves phase 特性 ------------------------------------------------------------------43 2-10 Mg型儲氫材料及複合型儲氫材料的特性 ------------------------ 45 2-11 高熵合金 ---------------------------------------------------------------------------48 2-12 機械合金法 -----------------------------------------------------------------------52 Chapter 3: 實驗步驟與方法 54 3-1 過渡金屬型合金設計 -------------------------------------------------------- 54 3-2 輕型合金設計 ------------------------------------------------------------------- 54 3-3 過渡金屬型合金製備 -------------------------------------------------------- 55 3-4 過渡金屬型合金粉末製備 ------------------------------------------------- 56 3-5 輕型合金粉末製備 ------------------------------------------------------------ 56 3-6 試片活化、動力學曲線與PCI曲線 --------------------------------------56 3-6-1 試片活化 --------------------------------------------------------------- 57 3-6-2 動力曲線 -----------------------------------------------------------------59 3-6-3 PCI曲線 ------------------------------------------------------------------- 60 3-7 XRD分析 ------------------------------------------------------------------------------61 3-8 SEM分析 ------------------------------------------------------------------------------61 3-9 DSC分析 ------------------------------------------------------------------------------61 Chapter 4: 結果與討論 62 4-1 CoFeMnTiyVZr 與 CoFexMnTiVZr 合金SEM、EDS與Mapping分-----62 4-2 CoFeMnTiyVZr 與 CoFexMnTiVZr 合金動力學曲線分析 ------------83 4-3 CoFeMnTiyVZr 與 CoFexMnTiVZr 合金PCI曲線分析 -------------------91 4-4 CoFeMnTiyVZr 與 CoFexMnTiVZr 合金XRD晶體結構分析 --------100 4-5 CoFeMnTiyVZr 與 CoFexMnTiVZr 合金DSC熱性質分析 ------------117 4-6 AlMgNiwTiZr 合金SEM / EDS 分析 ----------------------------------------120 4-7 AlMgNiwTiZr 合金動力學曲線分析 -------------------------------------128 4-8 AlMgNiwTiZr 合金PCI曲線分析 --------------------------------------------131 4-9 AlMgNiwTiZr 合金XRD晶體結構分析 ---------------------------------- 133 4-10 AlMgNiwTiZr 合金DSC熱性質分析 ------------------------------------ 137 4-11 CoFeMnTiyVZr、CoFexMnTiVZr與AlMgNiwTiZr 合金熱力學分--140 Chapter 5: 結論 -----------------------------------------------------------------------149 Chapter 6: References -----------------------------------------------------------------154 圖目錄 頁次 圖1-1 儲氫材料發展趨勢 -----------------------------------------------------------3 圖2-1 裝同樣四公斤的氫氣所需不同儲氫材料的體積相對於汽車示意圖 ------------------------------------------------------------------------------------7 圖2-2 元素及其氫化物資料表 (含儲氫量 wt%)----------------------------8 圖2-3 各種金屬氫化物的van’t Hoff line -------------------------------------9 圖2-4 儲氫材料家族譜 ------------------------------------------------------------ 11 圖2-5 氫原子在四面體與八面體格隙位置圖 ---------------------------12 圖2-6 儲氫合金形成示意圖 -----------------------------------------------------12 圖2-7 金屬氫化物ΔH比較圖 ----------------------------------------------------13 圖2-8 多種複合氫化物儲氫量比較圖 ------------------------------------- 14 圖2-9 NaAlH4系列的van’t Hoff plot ------------------------------------------ 15 圖2-10 多種孔隙型材料儲氫量與表面積示意圖 ----------------------17 圖2-11 MOF-5 結構圖 ----------------------------------------------------------------17 圖2-12 MOF-5於78 K儲氫示意圖 ------------------------------------------------18 圖2-13 MOF-5於室溫下儲氫示意圖 -------------------------------------------18 圖2-14 MOF-5於78 K儲氮示意圖 ------------------------------------------------19 圖2-15 多種製程奈米碳管動力學比較圖 ---------------------------------21 圖2-16 LaNi5與LaNi5H6結構圖-----------------------------------------------------22 圖2-17 AB5型儲氫合金的van’t‭ ‬Hoff plot -----------------------------------23 圖2-18 C14與C15 Laves phase ------------------------------------------------------24 圖2-19 AB2型儲氫合金的van’t Hoff plot -----------------------------------25 圖2-20 TiFe與TiFeH2結構圖 ---------------------------------------------------------26 圖2-21 Mg2Ni與Mg2NiD3.9吸放氫前後結構圖 ----------------------------27 圖2-22 PuNi3 AB3型合金晶體結構 ---------------------------------------------28 圖2-23 M. Martin利用吸氫動力曲線所推算的儲氫機制 ------------36 圖2-24 K. C. Chou預測動力曲線的模型 -------------------------------------36 圖2-25 反應分率F (The reacted fraction) 與Hydrogen absorption rate關係圖 ------------------------------------------------------------------------------------------37 圖2-26 合金在不同材質Chamber下的吸氫量與速率常數關係圖37 圖2-27 實際PCI曲線與簡單合金吸放氫像變化流程圖 --------------38 圖2-28 PCI曲線與van’t Hoff plot ------------------------------------------------40 圖2-29 C14與C15 AB2 Laves phase結構圖 ----------------------------------- 43 圖2-30 ZrMn2合金吸放氫前後XRD圖 ---------------------------------------- 44 圖2-31 MgH2及Mg2NiH4放氫DSC圖 ------------------------------------------- 45 圖2-32 不同晶粒大小Mg動力學曲線比較 ------------------------------- 46 圖2-33 Pd催化劑對Mg吸氫動力曲線影響 ---------------------------------46 圖2-34 Mg球磨的有無於350oC PCI 比較 ------------------------------------47 圖2-35 NaAlH4催化劑的有無對放氫動力學的影響 -------------------47 圖2-36 高熵合金熱力學分析圖 ------------------------------------------------50 圖2-37 緩慢擴散示意圖 -----------------------------------------------------------50 圖2-38 高熵合金與傳統合金導熱度比較示意圖 ----------------------51 圖2-39 機械合金法原理: A: 脆裂 B: 冷焊 ---------------------------------53 圖2-40 機械合金粉末粒徑與球磨時間關係圖 --------------------------53 圖3-1 本研究實驗流程圖 -------------------------------------------------------- 54 圖3-2 真空電弧熔煉爐 ------------------------------------------------------------ 55 圖3-3 活化條件與流程 ------------------------------------------------------------ 58 圖3-4 上: 試片腔體說明圖 下: 儲氫設備示意圖 ----------------------59 圖4-1 CoFeMnTi0.5VZr 粉末的500倍金相與EDS分析 --------------------65 圖4-2 CoFeMnTi0.5VZr 塊材的500倍金相與EDS分析 --------------------66 圖4-3 CoFeMnTiVZr 粉末的500倍金相與EDS分析 -------------------------66 圖4-4 CoFeMnTiVZr 塊材的500倍金相與EDS分析 -------------------------67 圖4-5 CoFeMnTi1.5VZr 粉末的500倍金相與EDS分析 --------------------67 圖4-6 CoFeMnTi1.5VZr 塊材的500倍金相與EDS分析 --------------------68 圖4-7 CoFeMnTi2VZr 粉末的500倍金相與EDS分析 -----------------------68 圖4-8 CoFeMnTi2VZr 塊材的500倍金相與EDS分析 -----------------------69 圖4-9 CoFeMnTi2.5VZr 粉末的500倍金相與EDS分析 --------------------69 圖4-10 CoFeMnTi2.5VZr 塊材的500倍金相與EDS分析 ----------------- 70 圖4-11 CoFeMnTi0.5VZr 塊材的500倍Mapping ------------------------------70 圖4-12 CoFeMnTiVZr 塊材的500倍Mapping ---------------------------------- 71 圖4-13 CoFeMnTi1.5VZr 塊材的500倍Mapping -------------------------------71 圖4-14 CoFeMnTi2VZr 塊材的500倍Mapping ---------------------------------72 圖4-15 CoFeMnTi2.5VZr 塊材的500倍Mapping -------------------------------72 圖4-16 CoFe0.5MnTiVZr 粉末的500倍金相與EDS分析 -------------------74 圖4-17 CoFe0.5MnTiVZr 塊材的500倍金相與EDS分析 -------------------74 圖4-18 CoFe1.25MnTiVZr 粉末的500倍金相與EDS分析 -----------------75 圖4-19 CoFe1.25MnTiVZr 塊材的500倍金相與EDS分析 -----------------75 圖4-20 CoFe1.5MnTiVZr 粉末的500倍金相與EDS分析 -------------------76 圖4-21 CoFe1.5MnTiVZr 塊材的500倍金相與EDS分析 -------------------76 圖4-22 CoFe2MnTiVZr 粉末的500倍金相與EDS分析 ---------------------77 圖4-23 CoFe2MnTiVZr 塊材的500倍金相與EDS分析 ---------------------77 圖4-24 CoFe2.5MnTiVZr 粉末的500倍金相與EDS分析 -------------------78 圖4-25 CoFe0.5MnTiVZr 塊材的500倍Mapping -------------------------------78 圖4-26 CoFe1.25MnTiVZr 塊材的500倍Mapping -----------------------------79 圖4-27 CoFe1.5MnTiVZr 塊材的500倍Mapping -------------------------------79 圖4-28 CoFe2MnTiVZr 塊材的500倍Mapping -------------------------------- 80 圖4-29 Tiy合金室溫的動力學曲線圖 -----------------------------------------84 圖4-30 Tiy合金室溫短時間的動力學曲線圖 -----------------------------84 圖4-31 Fex合金室溫的動力學曲線圖 ----------------------------------------85 圖4-32 Fex合金室溫短時間的動力學曲線圖 -----------------------------85 圖4-33 Tiy合金80oC的動力學曲線圖 -----------------------------------------87 圖4-34 Tiy合金80oC短時間的動力學曲線圖 ------------------------------88 圖4-35 Fex合金80oC的動力學曲線圖 --------------------------------------- 88 圖4-36 Fex合金80oC短時間的動力學曲線圖 ---------------------------- 89 圖4-37 t0.9 vs. x變量分佈圖 ------------------------------------------------------90 圖4-38 t0.9 vs. x變量短時間分佈圖 -------------------------------------------90 圖4-39 Tiy合金室溫下 PCI曲線圖 -----------------------------------------------92 圖4-40 Fex合金室溫下 PCI曲線圖 -------------------------------------------- 93 圖4-41 Tiy合金室溫最大儲氫量比較圖 -------------------------------------94 圖4-42 Fex合金室溫最大儲氫量比較圖 ----------------------------------- 94 圖4-43 四系列合金平台壓與成份變量比較圖 --------------------------95 圖4-44 四系列合金平台壓與成份變量 (低壓部份) 比較圖 ------95 圖4-45 四系列合金遲滯效應與成份變量比較圖 ----------------------96 圖4-46 Tiy合金80oC PCI曲線圖 ---------------------------------------------------97 圖4-47 Fex合金80oC PCI曲線圖 ------------------------------------------------- 98 圖4-48 Tiy合金80oC最大儲氫量比較圖 -------------------------------------99 圖4-49 Fex合金80oC最大儲氫量比較圖 ----------------------------------- 99 圖4-50 Ti1的吸氫前後XRD比較圖 ---------------------------------------------101 圖4-51 Ti0.5的吸氫前後XRD比較圖 ------------------------------------------101 圖4-52 Ti1.5的吸氫前後XRD比較圖 ------------------------------------------102 圖4-53 Ti2的吸氫前後XRD比較圖 ---------------------------------------------102 圖4-54 Ti2.5的吸氫前後XRD比較圖 ----------------------------------------- 103 圖4-55 Tiy合金吸氫前的XRD比較圖 -----------------------------------------103 圖4-56 Tiy合金吸氫後的XRD比較圖 -----------------------------------------104 圖4-57 Fe0.5的吸氫前後XRD比較圖 -----------------------------------------104 圖4-58 Fe1.25的吸氫前後XRD比較圖 ---------------------------------------105 圖4-59 Fe1.5的吸氫前後XRD比較圖 -----------------------------------------105 圖4-60 Fex合金吸氫前的XRD比較圖 --------------------------------------- 106 圖4-61 Fex合金吸氫後的XRD比較圖 --------------------------------------- 106 圖4-62 Ti1.5合金置於大氣下一天內與一周後XRD比較圖 --------107 圖4-63 Ti0.5吸放氫前後粉末500倍的金相 -------------------------------111 圖4-64 Ti1吸放氫前後粉末500倍的金相 ----------------------------------111 圖4-65 Ti1.5吸放氫前後粉末500倍的金相 -------------------------------111 圖4-66 Ti2吸放氫前後粉末500倍的金相 ---------------------------------112 圖4-67 Ti2.5吸放氫前後粉末500倍的金相 -------------------------------112 圖4-68 Fe0.5吸放氫前後粉末500倍的金相 ------------------------------112 圖4-69 Fe1.25吸放氫前後粉末500倍的金相 ----------------------------113 圖4-70 Fe1.5吸放氫前後粉末500倍的金相 ------------------------------113 圖4-71 Tiy合金的吸氫前DSC圖 ----------------------------------------------- 118 圖4-72 Ti1吸氫前後DSC對照圖 ----------------------------------------------- 118 圖4-73 Tiy合金的吸氫後DSC圖 -----------------------------------------------119 圖4-74 Fex合金的吸氫後DSC圖 ------------------------------------------------119 圖4-75 L - 1 - 8 粉末的500倍金相與EDS分析 -------------------------- 122 圖4-76 L - 1 - 12 粉末的500倍金相與EDS分析 ------------------------ 122圖4-77 L - 1 - 16 粉末的500倍金相與EDS分析 -------------------------123 圖4-78 L - 1 - 24 粉末的500倍金相與EDS分析 -------------------------123 圖4-79 L - 0.5 - 8 粉末的500倍金相與EDS分析 ------------------------124 圖4-80 L - 0.5 - 12 粉末的500倍金相與EDS分析 --------------------- 124 圖4-81 L - 0.5 - 16 粉末的500倍金相與EDS分析 -----------------------125 圖4-82 L - 0.5 - 24 粉末的500倍金相與EDS分析 -----------------------125 圖4-84 L - 0.3 - 12 粉末的500倍金相與EDS分析 -----------------------126 圖4-84 AlMgNiTiZr等莫耳較高溫度動力曲線圖 ------------------------126 圖4-85 L - 0.3 - 16 粉末的500倍金相與EDS分析 -----------------------127 圖4-86 L - 0.3 - 24 粉末的500倍金相與EDS分析 -----------------------127 圖4-87 AlMgNiTiZr等莫耳室溫動力曲線圖 -------------------------------129 圖4-88 AlMgNiTiZr等莫耳較高溫度動力曲線圖 ------------------------129 圖4-89 AlMgNiTiZr等莫耳室溫下PCI曲線圖 -------------------------------132 圖4-90 AlMgNiwTiZr 400oC下PCI曲線圖 -------------------------------------132 圖4-91 AlMgNiTiZr 吸氫後XRD圖 -----------------------------------------------134 圖4-92 AlMgNi0.5TiZr 吸氫後XRD圖 -------------------------------------------135 圖4-93 AlMgNi0.3TiZr 吸氫後XRD圖 -------------------------------------------135 圖4-94 AlMgNiwTiZr同球磨時間下 (8 h) 吸氫後XRD對照圖--------136 圖4-95 AlMgNixTiZr同球磨時間下 (16 h) 吸氫後XRD對照圖 ------136 圖4-96 AlMgNiTiZr合金的吸氫後DSC圖 -------------------------------------138 圖4-97 AlMgNi0.5TiZr系列的吸氫後DSC圖 -------------------------------- 138 圖4-98 AlMgNi0.3TiZr系列的吸氫後DSC圖 -------------------------------- 139 圖4-99 ΔHcal與儲氫量wt%的關係圖 ---------------------------------------146 圖4-100 ΔHcal與儲氫量 (H / atom) 的關係圖 --------------------------147 圖4-101 ΔHcal與儲氫量 (H / atom) 的關係圖 --------------------------147 圖4-102 三種常用ΔH計算法之比較圖 ----------------------------------148 表目錄 頁次 表1-1 各種氫化物性質 ---------------------------------------------------------------4 表2-1 氫與金屬元素關係圖 -------------------------------------------------------9 表2-2 常見複合氫化物與理論儲氫量 ------------------------------------- 14 表2-3 有關奈米碳管儲氫特性研究成果 ---------------------------------- 20 表2-4 部份二元AB3型合金儲氫量 --------------------------------------------29 表2-5 各種儲氫合金吸放氫前後結構比較 -------------------------------29 表2-6 儲氫合金工程優缺點對照 ----------------------------------------------30 表2-7 儲氫合金工作溫度壓力對照 ------------------------------------------31 表2-8 TiFe合金表面的氧化物 ----------------------------------------------------32 表2-9 各類金屬氫化物活化條件表 ------------------------------------------34 表4-1 非等莫耳Tiy、Fex合金成份列表 --------------------------------------63 表4-2 各金屬元素與氫結合焓 (ΔH) -----------------------------------------63 表4-3 金屬原子半徑表 -------------------------------------------------------------81 表4-4 Tiy與Fex合金室溫動力曲線資訊統整 ------------------------------86 表4-5 相關文獻儲氫動力學資料 [107, 108, 109] -----------------------86 表4-6 Tiy與Fex合金80oC動力曲線資訊統整 -------------------------------89 表4-7 Tiy與Fex合金室溫PCI曲線資料 -----------------------------------------93 表4-8 Tiy與Fex合金80oC PCI曲線資料 ----------------------------------------98 表4-9 Tiy、Fex合金吸氫前的晶格常數對照表 -------------------------107 表4-10 Tiy、Fex合金吸氫後的晶格常數對照表 ---------------------- 108 表4-11 Tiy、Fex合金吸氫後的體積膨脹率 (%) 對照表 -------------108 表4-12 Tiy合金吸放氫前後晶粒大小與顆粒大小資料 -------------114 表4-13 Fex合金吸放氫前後晶粒大小與顆粒大小資料 ------------114 表4-14 許臻豪成份CoFeMnTiVxZry 吸放氫前後晶粒大小資料 --115 表4-15 四系列合金晶粒大小範圍資料 -----------------------------------116 表4-16 常見HCP金屬c/a ratio資料表 ----------------------------------------116 表4-17 AlMgNiwTiZr合金成份配置表 ----------------------------------------120 表4-18 金屬原子半徑表 -------------------------------------------------------- 130 表4-19 Tiy與Fex合金氫化物的結合焓 ------------------------------------- 142 表4-20 輕型含鎂合金氫化物的結合焓 ---------------------------------- 143

    1.Dincer I. Thermodynamics, exergy and environmental impact. Proceedings of the ISTP-11, the 11th International Symposium on Transport Phenomena, 29 November–3 December 1998, Hsinchu, Taiwan, (1998b) 121
    2.Dincer I, Rosen MA. The intimate connection between exergy and the environment. In: Bejan A, Mamut E, editors. Thermodynamic optimization of complex energy systems. The Netherlands: Kluwer Academic, (1999) 221
    3.Anders Andreasen, PhD thesis, 2005
    4.Momirlan M, Veziroglu TN. Renewable Sustainable Energy Rev., 6 (2002) 141
    5.大角泰章, 水素吸藏合金, 化學工業社, (日本東京, 1993).
    6.A. Zuttel, L. Schlapbach, Nature, 414 (2001) 353
    7.http://www.hydrogen.energy.gov/.
    8.W. Grochala, P. P. Edwards, Chem. Rev., 104 (2004) 1283
    9.a) F. SchMth, B. Bogdanovic, M. Felderhof, Chem. Commun. 2004, 37, p. 2249–2258; b) S. Orimo, Y. Nakamori, J. R. Eliseo, A. Zuttel, C. M. Jensen, Chem. Rev., 107 (2007) 4111
    10.林俊廷‭, ‬國立清華大學材料科學工程研究所碩士論文‭, (‬2007‭)‬
    11.許臻豪‭, ‬國立清華大學材料科學工程研究所碩士論文‭, (‬2008‭)‬
    12.T. Gramham, Philosophical Transactions of the Royal Society of London, 156 (1866) 399
    13. J. J. Reilly, Hydrogen: It’s Technology and Implications, 2 (1977) 13
    14.H. Zijlstra, F. F. Westendorp, Solid State Communications, 7(12) (1969) 857
    15.G. Sandrock, J. Alloys and Compounds, 293-295 (1999) 877-888.
    16.K.H.J. Buschow and H.H. van Mal, J. Less-Common Metals, 29 (1972) 203.
    17.J. H. N. van Vucht, F. A. Kuijpers, H. C. M. Bruning, Philips Research Reports, 25 (1970) 133
    18.A. Züttel, P. Wenger, S. Rentsch, P. Sudan, Ph. Mauron, Ch. Emmenegger, Journal of Power Sources, 118 (2003) 1
    19.A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Nature (London), 386 (1997) 377
    20.L. Schlapbach, A. Züttel, Nature, 414 (2001) 353
    21.J. E. Huheey, “Inorganic Chemistry”, Harper & Row, New York, (1983)
    22.A. Züttel, in H2net seminar (University of Birmingham, Birmingham, (2004).
    23.M. Martin, C. Gommel, C. Borkhart, E. Fromm, Journal of Alloys and Compounds, 238 (1996) 193
    24.Pinkerton and Wicke, The Industrial Physicist (2004) 20
    25.Anders Andreasen, Hydrogen Storage Materials with Focus on Main Group I-II Elements, PhD thesis, 2005
    26.A. Zaluska, L. Zaluski, J.O. Strom–Olsen, Journal of Alloys and Compounds, 288 (1999) 217
    27.A. Zaluska, L. Zaluski, J.O. Strom–Olsen, J. Alloys & Compounds, 253-254 (1997) 70
    28.Borislav Bogdanovic, Manfred Schwickard, J. Alloys & Compounds, 253-254 (1997) 1
    29.H. Fujii, et al., Physica B, 383 (2006) 45–48
    30.Q. Zheng, H. Xu, Y. Cui, G. Qian, 材料導報, 22 (2008) 106
    31.Mohamed Eddaoudi, Jaheon Kim, Nathaniel Rosi, David Vodak, Joseph Wachter, Michael O’Keeffe, Omar M. Yaghi, Science, 295 (2002) 469
    32.Anne Pichon, Ana Lazuen-Garay and Stuart L. James, CrystEngComm, 8 (2006) 211
    33.Bernard F. Hoskins, and Richard Robson, J. Am. Chem. SO, 111 (1989) 5962
    34.M. Felderhoff, Phys. Chem. Chem. Phys., 9 (2007) 2643
    35.Hailian Li, Mohamed Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature, 402 (1999) 276
    36.Nathaniel L. Rosi, Juergen Eckert, Mohamed Eddaoudi, David T. Vodak, Jaheon Kim, Michael O’Keeffe, Omar M. Yaghi, Science, 300 (2003) 1127
    37.Li et al. in “Chemistry of Carbon Nanotubes”, Ch. 10 Eds Basiuk and Basiuk, American Scientific Publishers (2007)
    38.S.S. Mao, Int. J. Energy Res., 31 (2007) 619
    39.Ozaki T., Y. Zhang, M. Komaki, C. Nishimura. International Journal of Hydrogen Energy, 28 (2003) 1229
    40.O’Brien J., R. Hughes, J. Hisek. Surface Coating Technology, 253 (2001) 142
    41.H. Sakaguchi, N. Taniguchi, H. Seri, J. Shiokawa and G. Adachi. J. Appl. Phys. 64 (1988) 888
    42.T. Sakai, H. Ishikawa, H. Miyamura, S. Yamada, T. Iwasaki, J. Electrochem. Soc., 138 (1991) 908
    43.L. Huang, H. Gong, W. Gao, Thin Solid Films, 339 (1999) 78
    44.J. H. N. van Vucht, F. A. Kuijpers, H. C. M. Bruning, Philips Research Reports, 25 (1970) 133
    45.J. H. Wemick, S. Geller, Acta Crystallographica, 12 (1959) 662
    46.A. Pebler, E. A. Gulbransen, Electrochemical Technology, 4 (1966) 211
    47.C. E. Lundin, F. E. Lynch, C. B. Magee, Journal of Less-Common Metals, 19 (1977) 56
    48.J. J. Reilly, R. H. Wiswall Jr., Inorganic Chemistry, 13 (1974) 218
    49.A. Pebler, E. A.Gullbransen, Transactions of the Metallurgical Society of AIME, 239 (1967) 1593
    50.T. Sakai, H. Yoshinaga, H. Miyamura, H. Ishikawa, Journal of Alloys and Compounds, 180 (1992) 37
    51.http://cst-www.nrl.navy.mil/lattice/struk/laves.html
    52.R. P. Elliot, W. Rostocker, Transaction of American Society of Metal, 50 (1958) 617
    53.D. Shaltiel, I. Jacob, D. Davidov, Journal of Less-Common Metals, 53 (1977) 117
    54.Ming Au, F. Pourarian, S. G. Sankar, W. E. Wallace, Lian Zhang, Materials Science and Engeering B, 33 (1995) 53
    55.J. J. Reilly, J. R. Johnson, R. H. Wiswall, Jr. BNL, Reports, 20791 (1975) ; 21322 (1976)
    56.T. Nambu , H. Ezaki, H. Yukawa, M. Morinaga, Journal of Alloys and Compounds, 293–295 (1999) 213
    57.W. Schäfer, G. Wisswall, T. Schober, Materials Reseach Bulletin, 13 (1974) 218
    58.S. V. Mitrokhin, V. N. Verbetsky, R. R. KajumovHong Cunmao, Zhang Yufen, Journal of Alloys and Compounds, 199 (1993) 155
    59.Jianxin Ma, Hongge Pan, Xinhua Wang, Changpin Chen, Qidong Wang, International Journal of Hydrogen Energy, 25 (2000) 779
    60.J. J. Reilly, R. H. Wiswall, Inorganic Chemistry, 7 (1968) 2254
    61.K. Ikeda, S. Orimo, A. Züttel, L. Schlapbach, H. Fujii, Journal of Alloys and Compounds, 280 (1998) 279
    62.P. Wang, A. M. Wang, H. F. Zhang, B. Z. Ding, Z. Q Hu, Journal of Alloys and Compounds, 313 (2000) 218
    63.Q. Li, Q. Lin, K. C. Chou, L. J. Jiang, F. Zhan, Journal of Materials, 19(10) (2004) 2871
    64.P. Selvam, B. Viswanathan, C. S. Swamy, V. Srinvasan, International Journal of Hydrogen Energy, 11 (1986) 169
    65.J. Zhu, J. Zhang, F. Fang, S. Zheng, C. Chen, D. Sun, 稀有金屬材料與工程, 37 (2008) 1377
    66.J. Zhang, F. Fang, S. Zheng, J. Zhu, C. Chen, D. Sun, 稀有金屬材料與工程 37 (2008) 926
    67.Dunlap B D, Viccaro P J, Shenoy G K. J Less-Common Met[J], 74 (1980) 75
    68.Latroche M et al. J Alloys Compd[J], 2003, 356~357: 461
    69.Latroche M et al. J Solid State Chemistry[J], 173 (2003) 236
    70.Y. Nakamura, E. Akiba, Journal of Alloys and Compounds, 311 (2000) 317
    71.X.B. Yu, S.L. Feng, Z. Wu, B.J. Xia, N.X. Xu, Journal of Alloys and Compounds, 393 (2005) 129
    72.L. Schlapbach, T. Riesteer, Applied Physics A, 32 (1983) 169
    73.H. Züchner, G. Kirch, Journal of Less-Common Metals, 99 (1984) 143
    74.H. C. Kim, J. Y. Lee, Jounral of Less-Common Metals, 105 (1985) 247
    75.P. Tessier, H. Enoki, M. Bououdina, E. Akiba, Journal of Alloys and Compounds, 268 (1998) 285
    76.M. Martin, C. Gommel, C. Borkhart, E. Fromm, Journal of Alloys and Compounds, 238 (1996) 193
    77.K. C. Chou, Q. Li, Q. J. Jiang, K. D. Xu, Journal of Alloys and Compounds, 30 (2005) 301
    78.P. S. Rudman, Journal of Less-Common Metals, 89 (1983) 93
    79.C. N. Park, J. Y. Lee, Journal of Less-Common Metals, 91 (1983) 189
    80.H. S. Chung, J. Y. Lee, Journal of Less-Common Metals, 123 (1986) 209
    81.洪國治‭, ‬氫能科技與鎳氫化物蓄電池研討會講議‭, ‬April 28‭, (‬1993‭) ‬304
    82.A. J. Kumnick, H. H. Johnson, Acta Metallurgica, 25 (1977) 891
    83.D. K. Kuhn, Acta Metallurgica, 28 (1980) 33
    84.J. K. Wu, International Journal of Hydrogen Energy, 17 (1992) 917
    85.A. Zaluska*, L. Zaluski, J.O. Stro‥m-Olsen, Journal of Alloys and Compounds, 289 (1999) 197
    86.胡子龍, 貯氫材料
    87.J. Huot, G. Liang, S. Boily, A. Van Neste, R. Schulz, Journal of Alloys and Compounds, 293-295 (1999) 495
    88.A. Zaluska, L. Zaluski, J.O. Ström-Olsen, Appl. Phys. A 72 (2001) 157
    89.P.K. Huang, J.W. Yeh, T.T. Shun, and S.K. Chen, Advanced Engineering Materials, 6 (2004) 74
    90.C.Y. Hsu, J.W. Yeh, S.K. Chen, and T.T. Shun, Metallurgical and Materials Transactions, 35A (2004) 1465
    91.J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H Tsau, and S.Y. Chang, Advanced Engineering Materials, 6 (2004) 299
    92.J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H Tsau, and S.Y. Chang, Metallurgical and Materials Transactions, 35A (2004) 2533
    93.T.K. Chen, T.T. Shun, J.W. Yeh, and M.S. Wong, Surface and Coatings Technology, 188-189 (2004) 193
    94.C.J. Tong, S.K. Chen, J.W. Yeh, T.T. Shun, C.H Tsau, S.J. Lin, and S.Y. Chang, Metallurgical and Materials Transactions, 36A (2005) 881
    95.C.J. Tong, M.R Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, and S.Y. Chang, Metallurgical and Materials Transactions, 36A (2005) 1263
    96.Y.Y. Chen, T, Duval, U.D. Hung, J.W. Yeh, and H.C. Shih, Corrosion Science, 47 (2005) 2679
    97.Y.Y. Chen, T, Duval, U.D. Hung, J.W. Yeh, and H.C. Shih, Corrosion Science, 47 (2005) 2257
    98.陳彥羽, 洪育德, 葉均蔚, 施漢章, 防蝕工程, 18 (2004) 25
    99.葉均蔚, 陳瑞凱, 科學發展, 337 (2004) 16
    100.葉均蔚, 陳瑞凱, 林樹均, 工業材料, 224 (2005) 71
    101.A.L. Mackay, Crystallography Reports, 46 (2001) 524
    102.J.S. Benjamin, Metallurgical Transaction, 1 (1970) 2943
    103.A.E. Ermakov, E.E. Yurchikov, and V.A. Barinov, Phys. Met. Metallogr., 52 (1981) 50
    104.C.C. Koch, O.B. Cavin, C.G. McKamey, and J.O. Scarbrough, Appl. Phys. Lett., 43 (1983) 1017
    105.C. Suryanarayana, Progess in Materials Science, 46 (2001) 1
    106.X. B. Yu, Z. Wu, T. Huang, J. Cheng, B. Xia, N. Xu., International Journal of Hydrogen Energy, 29 (2004) 81
    107.V. K. Sinba, F. Pourarian, W. E. Wallance, Journal of Physical Chemistry, 86 (1982) 4952
    108.X. B. Yu, Z. X. Yang, S. L. Feng, Z. Wu, N. X. Xu, International Journal of Hydrogen Energy, 31 (2006) 1176
    109.X. B. Yu, Z. X. Yang, S. L. Feng, Z. Wu, N. X. Xu, International Journal of Hydrogen Energy, 31 (2006) 1176
    110.M. Kandavel, S. Ramaprabhu, Journal of Physics : Condensed Matter, 15 (2003) 7501
    111.J. F. Herbst, Journal of Alloys and Compounds, 337 (2002) 99
    112.D. Shaltiel, I. Jacob, D. Davidov, Journal of Less-Common Metals, 53 (1977) 117
    113.Y. Osumi, Hydrogen-Storage Alloy Properties and Appications, Agnetechnical Center, Tokyo, in Japanese, 1993
    114.M. V. Simičić, M. Zdujić, R. Dimitrijević, Lj. Nikolić-Bujanović, N. H. Popović, Journal of Power Sources, 158 (2006) 730
    115.G. Liang, J. Huot , S. Boilyb, A. Van Nestea, R. Schulzb, Journal of Alloys and Compounds, 282 (1999) 286
    116.M. V. C. Sastri (chief ed.), B. Viswanathan, S. Srinivasa Murthy (associate eds.), Metal Hydrides: fundamentals and applications, (Narosa Publishing House, New Delhi, 1998
    117.D. Shaltiel, I. Jacob, D. Davidov, Journal of Less-Common Metals, 53 (1977) 117
    118.Y. Yan, Y. Chen, H. Liang, C. Wu, M. Tao, T. Mingjing, Journal of Alloys and Compounds, 426(1-2) (2006) 253
    119.A. K. Singh, Ajay K. Singh, O. N. Srivastava, International Journal of Hydrogen Energy, 20(8) (1995) 647
    120.S. W. Cho, H. Enoki, E. Akiba, Journal of Alloys and Compounds, 307 (2000) 304

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE