簡易檢索 / 詳目顯示

研究生: 王靖智
Wang, Ching-Chih
論文名稱: 以風力切換式磁阻發電機為主之雙極性直流微電網
A WIND SWITCHED-RELUCTANCE GENERATOR BASED BIPOLAR DC MICROGRID
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 曾萬存
Tseng, Wan-Tsun
陳盛基
Chen, Seng-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 110
中文關鍵詞: 風力發電機切換式磁阻電機電壓控制強健控制換相移位三階升壓轉換器雙極性直流微電網變頻器電池儲能系統微電網至家用負載
外文關鍵詞: Wind generator, switched-reluctance machine, voltage control, robust control, commutation shift, three-level boost converter, bipolar dc microgrid, inverter, battery, energy storage system, M2H
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發一風力切換式磁阻發電機為主之雙極性直流微電網。首先,建立實驗型之風力切換式磁阻發電機,使用一變頻器供電永磁同步馬達作為發電機之替代風渦輪機,並裝設適當之外激電源以成功發電建立電壓。採用磁滯電流控制脈波寬度調變機構,提高線圈電流控制之強健性,以對抗反電動勢效應。透過適當電壓命令之設定、強健電壓控制及動態換相移位,獲得在變動轉速下改善之輸出電壓特性。
    接著,建構切換式磁阻發電機後接之三階升壓介面轉換器,建立電壓調節特性良好之微電網雙極性直流匯流排。並由所提均壓控制架構降低雙極性直流匯流排之電壓不平衡。此外,使用簡易之強健電壓控制,強化電壓調節控制之強健性及性能。其次,開發一蓄電池儲能系統,提供所建雙極性直流微電網之能源支撐,蓄電池經一雙向升/降壓直流/直流轉換器介接至微電網之匯流排,搭配適當之控制,獲得良好之充、放電特性。再者,配裝一傾卸式負載,避免能源過剩所造成之匯流排過壓。
    第三,建構一單相三線負載變頻器作為測試負載,應用比例共振控制得到良好之交流電壓波形及動態響應特性,用以從事單向微電網至家用負載之操作。最後,以實測結果觀察所建構雙極性直流微電網之總體操作特性。


    The development of a wind switched-reluctance generator (SRG) based bipolar DC microgrid is presented in this thesis. First, the experimental wind SRG system is established. An inverter-fed permanent-magnet synchronous motor (PMSM) is employed as an alternative wind turbine. And a proper external excitation source is equipped for successful voltage building. The hysteresis current-controlled PWM scheme is used to enhance the winding current control robustness against the effects of back electromotive force. Then, the improved generated voltage under varying wind speed is achieved through adequate voltage command setting, robust voltage control and dynamic commutation shift.
    Next, the SRG followed three-level boost interface converter is constructed to establish a well-regulated bipolar common DC bus. The voltage-balancing control scheme is proposed to reduce the voltage unbalance of bipolar DC bus. Moreover, the simple robust voltage control is used to enhance the voltage regulation ability. To provide the energy support for the established bipolar DC microgrid, the battery energy storage system is developed. A bidirectional buck/boost DC/DC converter with proper control is used as an interface converter. Good charging and discharging performances are evaluated experimentally. In addition, a chopped dump load is equipped to prevent the common DC bus from over-voltage due to the energy surplus.
    Third, a single-phase three-wire load inverter is established and used as a test load. The proportional-resonant (PR) controller is designed to yield good AC voltage waveforms and dynamic performance. Then, the unidirectional microgrid-to-home (M2H) operation control is conducted. Finally, the characteristics of the established whole bipolar DC microgrid are observed. Some measured results are presented to demonstrate their dynamic responses and steady-state characteristics.

    ABSTRACT i ACKNOWLEDGEMENT ii LIST OF CONTENTS iii LIST OF FIGURES vi LIST OF TABLES xiii LIST OF SYMBOLS xiv LIST OF ABBREVIATION xxiii CHAPTER 1 INTRODUCTION 1 CHAPTER 2 OVERVIEW OF MICROGRID CONSTITUTED COMPONENTS 5 2.1 Introduction 5 2.2 Microgrids 5 2.3 Wind Generators 7 2.3.1 Wind Turbines 7 2.3.2 Governing Equations and Power Characteristics 8 2.3.3 Typical Wind Generators 9 2.4 Switched-Reluctance Machines 11 2.4.1 Motor Structures 11 2.4.2 Governing Equations and Dynamic Modeling 13 2.4.3 SRM Converters 15 2.4.4 Some Key Issues of SRG 18 2.5 Energy Storage Devices 19 2.6 Interface Converters 20 2.7 PWM Inverters 22 2.7.1 Single-Phase SPWM Inverters 22 2.7.2 Possible Single-phase Three-wire Inverters 24 CHAPTER 3 THE DEVELOPED WIND SWITCHED-RELUCTANCE GENERATOR 26 3.1 Introduction 26 3.2 Power Circuit 26 3.3 Sensing and Interfacing Circuits 30 3.4 Control Schemes 32 3.5 Performance Evaluation 37 3.6 Re-evaluation of the SRG System 43 CHAPTER 4 MICROGRID BIPOLAR DC-BUS ESTABLISHMENT 45 4.1 Introduction 45 4.2 Capacitive Voltage Divider 45 4.3 Two-level Boost Converter and Voltage Balancer 45 4.3.1 Circuit Operation 46 4.3.2 Power Circuit 47 4.3.3 Control Schemes 50 4.3.4 Experimental Results 53 4.4 Three-level Boost Converter 54 4.4.1 Circuit Operation and Transfer Characteristics 54 4.4.2 Energy Storage Inductor 56 4.4.3 Control Schemes 57 4.4.4 Performance Evaluation 59 4.5 Interleaved Three-level Boost Converter 66 4.5.1 Circuit Operation and Transfer Characteristics 66 4.5.2 Energy Storage Inductor 69 4.5.3 Performance Evaluation 70 4.6 Wind SRG Based Bipolar DC Microgrid 76 CHAPTER 5 WHOLE SWITCHED-RELUCTANCE GENERATOR BASED BIPOLAR DC MICROGRID 81 5.1 Introduction 81 5.2 Battery Energy Storage System 81 5.2.1. Power Circuit 81 5.2.2. Control Scheme 83 5.2.3. Measured Results 85 5.3 Single-phase Three-wire Inverter 87 5.3.1 System Configuration 87 5.3.2 Dynamic Model 89 5.3.3 Control Scheme 91 5.3.4 Measured Results 93 5.4 The Whole Wind SRG Powered Bipolar DC Microgrid 97 CHAPTER 6 CONCLUSIONS 103 REFERENCES 104

    A. Microgrid and Distributed Power Systems
    [1] S. M. Sharkh, M. A. Abu-Sara, G. I. Orfanoudakis and B. Hussain, Power electronic converters for microgrids, John Wiley & Sons, 2014.
    [2] E. Rodriguez-Diaz, M. Savaghebi, J. C. Vasquez and J. M. Guerrero, “An overview of low voltage DC distribution systems for residential applications,” in Proc. IEEE ICCE-Berlin, pp. 318-322, 2015.
    [3] T. Dragičević, X. Lu, J. C. Vasquez and J. M. Guerrero, “DC microgrids—Part II: A review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, May 2016.
    [4] W. Jing, C. H. Lai, S. H. Wong and M. L. D. Wong, “Battery-supercapacitor hybrid energy storage system in standalone DC microgrids: areview,” IET Renew. Power Gener., vol. 11, no. 4, pp. 461-469, Jan. 2017.
    [5] H. Bevrani, B. François and T. Ise, Microgrid dynamics and control, John Wiley & Sons, 2017.
    [6] A. Frances, R. Asensi, Ó. García, R. Prieto and J. Uceda, “Modeling electronic power converters in smart DC microgrids—An overview,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6274-6287, Nov. 2017.
    [7] S. Beheshtaein, R. M. Cuzner, M. Forouzesh, M. Savaghebi and J. M. Guerrero, “DC microgrid protection: A comprehensive review,” IEEE Trans. Emerg. Sel. Topics Power Electron., Jan. 2019.
    [8] H. Kakigano, Y. Miura and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3066-3075, Dec. 2010.
    [9] S. Rivera, B. Wu, S. Kouro, V. Yaramasu and J. Wang, “Electric vehicle charging station using a neutral point clamped converter with bipolar DC bus,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 1999-2009, Apr. 2015.
    [10] H. J. Kim and B. M. Han, “Operation analysis of bipolar DC distribution system with new half-bridge voltage balancer,” IEEE ICBEST, 2015, pp. 62-67.
    [11] Y. Gu, W. Li and X. He, “Analysis and control of bipolar LVDC grid with DC symmetrical component method,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 685-694, Jan. 2016.
    [12] J. M. Guerrero, P. C. Loh, T. L. Lee and M. Chandorkar, “Advanced control architectures for intelligent microgrids—Part II: Power quality, energy storage, and AC/DC microgrids,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1263-1270, Apr., 2013.
    [13] T. Dragičević, X. Lu, J. C. Vasquez and J. M. Guerrero, “DC microgrids—Part I: A review of control strategies and stabilization techniques,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4876-4891, Jul. 2016.
    [14] T. Ma, M. H. Cintuglu and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 567-575, Jan., 2017.
    [15] L. Meng, Q. Shafiee, G. F. Trecate, H. Karimi, D. Fulwani, X. Lu and J. M. Guerrero, “Review on control of DC microgrids and multiple microgrid clusters,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 3, pp. 928-948, Sep., 2017.
    [16] J. Zhou, Y. Xu, H. Sun, Y. Li and M. Chow, “Distributed power management for networked AC/DC microgrids with unbalanced microgrids,” IEEE Trans. Ind. Informat., vol. 16, no. 3, pp. 1655-1667, Mar. 2020.
    B. Switched-reluctance Machines
    (a) Switched-reluctance Motor
    [17] T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993.
    [18] P. C. Sen, Principles of electric machines and power electronics, 3rd ed., New Jersey: John Wiley & Sons, Inc.,2014.
    [19] K. Vijayakumar, R. Karthikeyan, S. Paramasivam, R. Arumugam and K. N. Srinivas, “Switched reluctance motor modeling, design, simulation, and analysis: a comprehensive review,” IEEE Trans. Magn., vol. 44, no. 12, pp. 4605-4617, Dec. 2008.
    [20] S. Li, S. Zhang, T. G. Habetler and R. G. Harley, “Modeling, design optimization, and applications of switched reluctance machines—a review,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2660-2681, May/Jun. 2019.
    [21] I. Boldea, L. N. Tutelea, L. Parsa and D. Dorrell, “Automotive electric propulsion systems with reduced or no permanent magnets: An overview,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp.5696-5711, Oct. 2014.
    [22] Z. Yang, F. Shang, I. P. Brown and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, Oct. 2015.
    [23] E. Bostanci, M. Moallem, A. Parsapour and B. Fahimi, “Opportunities and challenges of switched reluctance motor drives for electric propulsion: A comparative study,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 58-75, Mar. 2017.
    [24] B. Fahimi, A. Emadi and R. B. Sepe Jr, “A switched reluctance machine-based starter/alternator for more electric cars,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 116-124, 2004.
    [25] N. Schofield and S. Lomg, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 48-56, 2009.
    [26] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, no. 3, pp. 714-722, May/Jun. 2000.
    [27] D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, Sep. 2003.
    [28] C. Lin, W. Wang, M. McDonough and B. Fahimi, “An extended field reconstruction method for modeling of switched reluctance machines,” IEEE Trans. Magn., vol. 48, no. 2, pp. 1051-1054, Feb. 2012.
    [29] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
    [30] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
    [31] K. W. Hu, Y. Y. Chen and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tuning,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
    [32] S. Shin, N. Kawagoe, T. Kosaka, and N. Matsui, “Study on commutation control method for reducing noise and vibration in SRM,” IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 4415-4424, Sep./Oct. 2018.
    [33] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
    [34] Z. Lin, D. Reay, B. Williams and X. He, “High-performance current control for switched reluctance motors based on on-line estimated parameters,” IEEE Trans. Elect. Power Appl., vol. 4, no. 1, pp. 67-74, 2010.
    [35] R. Mikail, I. Husain, Y. Sozer, M. S. Islam and T. Sebastian, “A fixed switching frequency predictive current control method for switched reluctance machines,” IEEE Trans. Elect. Power Appl., vol. 50, no. 6, pp. 3717-3726, Nov./Dec. 2014.
    [36] X. Li and P. Shamsi, “Model predictive current control of switched reluctance motors with inductance auto-calibration,” IEEE Trans. Elect. Power Appl., vol. 63, no. 6, pp. 3934-3941, Jun. 2016.
    [37] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
    [38] H. Hannoun, M. Hilairet and C. Marchand, “Design of an SRM speed control strategy for a wide range of operating speeds,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2911-2921, 2010.
    [39] D. E. Cameron, J. H. Lang and S. D. Umans, “The origin and reduction of acoustic noise in doubly salient variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 1250-1255, 1992.
    [40] J. Y. Chai and C. M. Liaw, “On the reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling,” IEE Proc. Elect. Power Applicat., vol. 4, no. 5, pp. 380-396, 2010.
    [41] V. P. Vujičić, “Minimization of torque ripple and copper losses in switched reluctance drive,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 388-399, 2012.
    [42] Y. G. Dessouky, B. W. Williams, and J. E. Fletcher, “A novel power converter with voltage-boosting capacitors for a four-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 815-823, 1998.
    [43] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
    [44] A. Dahmane, F. Meebody, and F. M. Sargos, “A novel boost capacitor circuit to enhance the performance of the switched reluctance motor,” in Proc. IEEE PESC, 2001, vol. 2, pp. 844-849.
    [45] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front-end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
    [46] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
    [47] K. W. Hu, P. H. Yi, and C. M. Liaw, “An EV SRM drive powered by battery/supercapacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, 2015.
    (b) Switched-reluctance Generators
    [48] A. Radun, “Generating with the switched reluctance motor,” in Proc. IEEE APEC, 1994, vol. 1, pp. 41-47.
    [49] I. Husain, A. Radun and J. Nairus, “Fault analysis and excitation requirements for switched reluctance-generators,” IEEE Trans. Energy Convers., vol. 17, no. 1, pp. 67-72, 2002.
    [50] D. A. Torrey, “Switched reluctance generators and their control,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 3-14, 2002.
    [51] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher, and P. Wheeler, “ Control of a switched reluctance generator for variable-speed wind energy applications,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 781-791, 2005.
    [52] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008.
    [53] A. W. F. V. Silveira, D. A. Andrade, L. C. Gomes, A. Fleury and C. A. Bissochi, “DSP based SRG load voltage control,” in Proc. IEEE VPPC, 2010, pp. 1-5.
    [54] V. Nasirian, S. Kaboli and A. Davoudi, “Output power maximization and optimal symmetric freewheeling excitation for switched reluctance generators,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1031-1042, 2013.
    [55] D. W. Choi, S. I. Byun and Y. H. Cho, “A study on the maximum power control method of switched reluctance generator for wind turbine,” IEEE Trans. Magn., vol. 50, no. 1, 2014.
    [56] C. Sikder, I. Husain and Y. Sozer, “Switched reluctance generator control for optimal power generation with current regulation,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 307-316, 2014.
    [57] E. Rahmanian, H. Akbari, and G. H. Sheisi, “ Maximum power point tracking in grid connected wind plant by using intelligent controller and switched reluctance generator,” IEEE Trans. Sustain. Energy, vol. 8, no. 3, pp. 1313-1320, 2017.
    [58] T. A. D. Santos Barros, P. J. D. Santos Neto, P. S. N. Filho, A. B. Moreira, and E. R. Filho, “An approach for switched reluctance generator in a wind generation system with a wide range of operation speed,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8277-8292, 2017.
    [59] M. M. Namazi, S. M. S. Nejad, A. Tabesh, A. Rashidi, and M. Liserre, “Passivity-based control of switched reluctance-based wind system supplying constant power load,” IEEE Trans. Ind. Electron., vol. 65, no. 12, pp. 9550-9560, 2018.
    [60] P. J. D. Santos Neto, T. A. D. Santos Barros, M. V. D. Paula, R. R. D. Souza, and E. R. Filho, “Design of computational experiment for performance optimization of a switched reluctance generator in wind system,” IEEE Trans. Energy Convers., vol. 33, no. 1, pp. 406-419, 2018.
    (c) Converters for Switched-reluctance Machines
    [61] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
    [62] M. Barnes and C. Pollock, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100-1111, 1998.
    [63] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
    [64] D. Cabezuelo, J. Andreu, I. Kortabarria, E. Ibarra and I. Garate. “SRM converter topologies for EV application: state of the technology,” in Proc. IEEE ISIE, pp. 861-866, 2017.
    [65] F. Peng, J. Ye and Ali Emadi. “An asymmetric three-level neutral point diode clamped converter for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8618-8631, 2017.
    C. Energy Storage System
    [66] J. P. Barton and D. G. Infield, “Energy storage and its use with intermittent renewable energy,” IEEE Trans. Energy Convers., vol. 19, no. 2, pp. 441-448, 2004.
    [67] A. Kusko and J. DeDad, “Stored energy- short-term and long-term energy storage methods,” IEEE Trans. Ind. Appl. Mag., vol. 13, no. 4, pp. 66-72, 2007.
    [68] J. Cao and A. Emadi, “Batteries needs electronics,” IEEE. Ind. Electron. Mag., vol. 5, no. 1, pp. 27-35, 2011.
    [69] F. Luo, K. Meng, Z. Y. Dong, Y. Zheng, Y. Chen and K. P. Wong, “Coordinated operational planning for wind farm with battery energy storage system,” IEEE Trans. Sustain. Energy, vol. 6, no. 1, pp. 253-262, 2015.
    [70] G. Wang, G. Konstantinou, C. D. Townsend, J. Pou, S. Vazquez, G. D. Demetriades, and V. G. Agelidis, “A review of power electronics for grid connection of utility-scale battery energy storage systems,” IEEE Trans. Sustain. Energy, vol. 7, no. 4, pp. 1778-1790, 2016.
    [71] M. Ortuzar, J. Moreno, and J. Dixon, “Ultracapacitor-based auxiliary energy system for an electric vehicle: implementation and evaluation,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2147-2156, 2007.
    [72] P. Thounthong, S. Rael, and B. Davat, “Analysis of supercapacitor as second source based on fuel cell power generation,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 247-255, 2009.
    [73] F. A. Inthamoussou, J. Pegueroles-Queralt and F. D. Bianchi, “Control of a Supercapacitor Energy Storage System for Microgrid Applications,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 690-697, 2013.
    [74] W. Jing, C. H. Lai, S. H. W. Wong and M. L. D. Wong, “ Battery-supercapacitor hybrid energy storage system in standalone DC microgrids: areview,” IET Renew. Power Gener., vol. 11, Iss. 4, pp. 461-469, 2017.
    [75] S. Kotra and M. K. Mishra, “ Design and stability analysis of DC Microgrid with hybrid energy storage system,” IEEE Trans. Sustain. Energy, vol. 10, no. 3, pp. 1603-1612, 2019.
    [76] G. O. Cimuca, C. Saudemont, B. Robyns, and M. M. Radulescu, “Control and performance evaluation of a flywheel energy-storage system associated to a variable-speed wind generator,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1074-1085, 2006.
    [77] R. Pena-Alzola, R. Sebastian, J. Quesada, and A. Colmenar, “Review of flywheel based energy storage systems,” in Proc. IEEE Power Eng., 2011, pp. 1-6.
    [78] J.-I. Itoh, K. Tanaka, S. Matsuo, and N. Yamada, “Experimental verification of flywheel power leveling system oriented to low cost and general purpose use,” in Proc. IEEE ECCE, 2013, pp.35-42.
    [79] F. Diaz-Gonzalez, F. D. Bianchi, A. Sumper, and O. Gomis-Bellmunt, “Control of a flywheel energy storage system for power smoothing in wind power plants,” IEEE Trans. Energy Convers., vol. 29, no. 1, pp. 204-214, 2014.
    D. Interface Power Converters
    [80] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics Converters, Applications and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003.
    [81] D. G. Holmes, P. Atmur, C. C. Beckett, M. P. Bull, W. Y. Kong, W. J. Luo, D. K. C. Ng, N. Sachchithananthan, P. W. Su, D. P. Ware and P. Wrzos, “An innovative, efficient current-fed push-pull grid connectable inverter for distributed generation systems,” in Proc. IEEE PESC, 2006, pp. 1-6.
    [82] E. Hiraki, K. Hirao, T. Tanaka and T. Mishima, “A push-pull converter based bidirectional DC-DC interface for energy storage systems,” in Proc. IEEE EPE, 2009, pp. 1-10.
    [83] N. M. L. Tan, T. Abe and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2011.
    [84] U. R. Prasanna and A. K. Rathore, “Current-fed interleaved phase-modulated single-phase unfolding inverter: analysis, design, and experimental results,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 310-319, 2014.
    [85] K. W. Hu, J. C. Wang, T. S. Lin and C. M. Liaw, “A switched-reluctance generator with interleaved interface DC-DC converter,” IEEE Trans. Energy Convers. vol. 30, no. 1, pp. 273-284, 2015.
    [86] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-up DC/DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143-9178, 2017.
    [87] H. Kakigano, Y. Miura, T. Ise, and R. Uchida, “DC voltage control of the DC micro-grid for super high quality distribution,” in Proc. IEEE PCC, 2007, pp. 518–525.
    [88] H. J. Kim and B. M. Han, “ Operation analysis of bipolar DC distribution system,” in Proc. IEEE ICBEST, 2015, pp. 62–67.
    [89] F. Wang, Z. Lei, X. Xu and X. Shu, “Topology deduction and analysis of voltage balancers for DC microgrid,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 2, pp. 672–680, 2017.
    [90] X. Ruan, B. Li, Q. Chen, S. C. Tan and C. K. Tse, “ Fundamental considerations of three-level DC–DC converters: Topologies, analyses, and control,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 55, no. 11, pp. 3733–3743, 2008.
    [91] H. C. Chen and W. J. Lin, “MPPT and voltage balancing control with sensing only inductor current for photovoltaic fed three-level boost-type converters,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 29–34, 2014.
    [92] V. Yaramasu and B. Wu, “Predictive control of a three-level boost converter and an NPC inverter for high power PMSG Based Medium voltage wind energy conversion systems,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5308–5322, 2014.
    [93] X. Zhang, B. Wang, U. Manandhar, H. B. Gooi and G. Foo, “A model predictive current controlled bidirectional three-level DC/DC converter for hybrid energy storage system in DC microgrids,” IEEE Trans. Power Electron., vol. 34, no. 5, pp. 4025–4030, 2019.
    E. PWM Inverters
    [94] A. M. Hava, R. J. Kerkman and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999.
    [95] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683-689, 1999.
    [96] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. IEEE ICPST, 2000, vol. 3, pp. 1659-1664.
    [97] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, New Jersey: Wiley-IEEE Press, 2003.
    [98] Y. Wue, L. Chang, S. B. Kjær, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
    [99] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña and J. M. Guerrero, “Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4492-4500, 2009.
    [100] K. Selvajyothi and P. A. Janakiraman, “Reduction of voltage harmonics in single phase inverters using composite observers,” IEEE Trans. Power Del., vol. 25, no. 2, pp. 1045-1057, 2010.
    [101] K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, 2013.
    [102] R. Teodorescu, F. Blaabjerg, M. Liserre and P.C. Loh, “Proportional-resonant controllers and filters for grid-connected voltage-source converters,” IEE Proc.-Electr. Power Appl., vol. 153, no. 5, pp. 750-762, 2006.
    [103] M. C. Chou and C. M. Liaw, “Dynamic control and diagnostic friction estimation for a PMSM driven satellite reaction wheel,” IEEE Trans. Ind. Electron, vol. 58, no. 10, pp. 4693-4707, October 2011.

    QR CODE