研究生: |
林俊仁 Chun-Jun Lin |
---|---|
論文名稱: |
微型光纖費比裴洛式感測器之設計、製造與應用 The Design, Fabrication and Applications of Micro Fiber Optic Fabry-Perot Sensors |
指導教授: |
曾繁根
Fan-Gang Tseng |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2004 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 200 |
中文關鍵詞: | 光纖感測器 、微機電技術 、費比裴洛干涉術 、剪應力量測 、蛋白質分子檢測 、折射係數耦合油 、SU-8 光阻 |
外文關鍵詞: | fiber optic sensor, MEMS technology, Fabry-Perot interferometry, shear stress measurement, protein molecules detection, index matching oil, SU-8 photoresist |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究根據光纖費比-裴洛干涉術(Fabry-Perot Interferometry)的操作感測原理,分別設計與製作出應用於物理量剪應力與微位移的量測,以及應用於免疫反應蛋白質分子檢測的微型光纖感測器。
對於剪應力的量測方法,採取浮子式結構的設計來直接量取剪應力,利用創新的高分子微機電(Polymer MEMS)製程技術來製作微感測器,並且成功地製造出符合設計需求的垂直鏡面微結構;在封裝過程中,增加了光纖定位與夾制的懸臂結構解決光纖與浮子結構對準與定位不易,而光纖與浮子結構間的距離為50μm;另外在感測器的共振腔體中填充了矽油這種折射係數為1.406的折射係數耦合材料,對於感測器的靈敏度與量測訊號的強度有明顯的提昇作用,根據實驗校準的結果,可量測到的最小位移與剪應力大小分別為10nm與0.33Pa,與共振腔填充空氣的結果比較,微位移感測的靈敏度提昇1.95倍,剪應力感測的靈敏度提昇1.85倍,訊號強度增加了3.6dB;而且矽油材料的阻尼效應與液體的不可壓縮性,可以有效地解決聲波振動效應與壓力效應對於量測訊號的影響,在聲波振動頻率1Hz~5kHz內,其光譜的偏移變化量小於1nm,而壓力測試1大氣壓到6大氣壓的範圍內,其光譜的偏移量小於1.2nm,但是溫度效應對量測訊號所產生遲滯現象的影響則是尚待克服解決的問題。
而應用於蛋白質分子檢測的光纖感測器,則是利用浸沾塗佈與烘烤固化的方式,直接將高分子材料(SU-8或PDMS)製作在光纖端面上形成微共振腔結構,再利用金膜與硫醇分子的自組裝單層膜表面修飾技術,讓蛋白質分子可以與硫醇分子產生鍵結而接合在光纖感測探棒表面,進而改變探棒表面的折射係數,導致干涉光譜感測訊號的變化;測試時先將第一級的抗原蛋白質分子接合在感測器表面,再應用於不同濃度的第二級抗體分子檢測;也比較了兩種不同稀釋緩衝溶液:Lipofundin或Sodium Phosphate對於感測訊號的影響,如何避免緩衝溶液中懸浮粒子的非選擇性物理性吸附,是發展這種生醫感測器時所必須解決的問題;退火製程對於感測器中微共振腔材料及金膜反射率的影響,關係到了感測訊號訊雜比的提昇,研究中也有進一步的實驗與分析;最後關於此種感測器的再生製程研究,將接合於第一級抗原分子上的第二級抗體分子分離,以達到感測器的再生,目前已經在玻璃試片上利用表面電漿共振檢測系統驗證其可行性。
The development of the fiber optic sensors in this research is based on the principle of Fabry-Perot interferometry and the Polymer MEMS fabrication technology. One of the designs is for the application of the shear stress and nano-displacement measurement, and the other is for the in-situ and in-vivo detection of protein molecules such as the immunoreaction of antigen and antibody.
The fiber optic floating-element type sensor is designed to measure the shear stress directly. The surface roughness of the floating element fabricated by UV lithography on SU-8 photoresist is better than 7nm (Ra value) on 35*35 μm2 area and can be served as the reflection mirror. Silicon oil with the refractive index 1.406 is filled into the sensor cavity as an index matching medium for signal and sensitivity enhancement as well as a buffer material for pressure resistance and vibration reduction. With silicon oil filling, the sensitivity of displacement and shear stress sensing are 0.1249 nm/nm (wavelength shift/floating element displacement) and 6.825 nm/Pa (wavelength shift/shear stress), respectively. The sensor sensitivity and signal intensity can be improved by 1.85 times and 3.6dB compared to no silicon oil filling. The minimum detectable displacement and shear stress have been demonstrated to be 10nm and 0.33Pa. Besides, the signal spectrum shifts have been tested within 1nm under static pressure from 1atm to 6atm or acoustic vibration from 1Hz to 5kHz, because of the incompressibility and damping effect of the silicon oil. However, the temperature dependency and hysteresis effect of the sensor need to be improved or compensated for practical applications in the future.
The fiber optic biosensor for the protein molecules detection is prepared by the dip coating of SU8, depositing of gold film and followed by the surface modification with thiol groups, respectively. As the fiber probe inserting into the sample solution, the immobilization of the Rabbit IgG and Anti Rabbit IgG-Cy3 molecules on the fiber tip will result in the variation of the refractive index of interface as well as the reflectivity, and contribute to the wavelength shift of interference spectrum. The surface roughness and reflectance of the deposited gold film modified by the annealing process has been demonstrated. The non-specific adhesion of the suspended substances in the buffer solution onto the sensor tips needs to be avoided. Finally, the regeneration process of the sensor has been verified on the glass substrate by the surface plasmon resonance detection system.
[1] F.G. Tseng and C.J. Lin, “A high sensitive Fabry-Perot shear stress sensor employing flexible membrane and double SU-8 structures”, Technical Digest of IEEE Sensors Conference, Orlando USA, Vol. 2, pp.969-972, 2002.
[2] F.G. Tseng and C.J. Lin, “Polymer MEMS based Fabry-Perot shear stress sensor”, IEEE Sensors Journal , Vol. 3, pp.812-817, 2003.
[3] Chun-Jun Lin and Fan-Gang Tseng, “A Novel Micro Fabry-Perot Sensor Utilizing Refractive Index Matched Medium for High Sensitive Shear Stress Sensing”, IEEE Transducers’03, Boston USA, Vol. 1, pp.710-713, 2003.
[4] Chun-Jun Lin and Fan-Gang Tseng, “A Micro Fabry-Perot Sensor for Lateral Displacement Sensing with Enhanced Sensitivity and Pressure Resistance”, Sensors and Actuators A, Vol. 113, pp. 12-19, 2004.
[5] M. Jiang and E. Gerhard, “A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry–Perot interferometer”, Sensors and Actuators A, Vol. 88, pp.41-46, 2001.
[6] T. Wang, S. Zheng and Z. Yang, “A high precision displacement sensor using a low-finesse fiber-optic Fabry-Pérot interferometer”, Sensors and Actuators A, Vol. 69, pp. 134-138, 1998.
[7] N. Furstenau and M. Schmidt, “Fiber-optic extrinsic Fabry–Perot interferometer vibration sensor with two-wavelength passive quadrature readout”, Instrumentation and Measurement, IEEE Transactions on, Vol. 47, pp.143-147, 1998.
[8] T. K. Gangopadhyay, “Prospects for Fibre Bragg gratings and Fabry-Perot Interferometers in fibre-optic vibration sensing”, Sensors and Actuators A, Vol. 113, pp. 20-38, 2004.
[9] M.J. Gander, W.N. MacPherson, J.S. Barton, R.L. Reuben, J.D. C. Jones, R. Stevens, K.S. Chana, S.J. Anderson and T.V. Jones, “Embedded micromachined fiber optic fabry-perot pressure sensors in aerodynamics applications”, IEEE Sensors Journal, Vol. 3, pp.102-107, 2003.
[10] K. Totsu, Y. Haga and M. Esashi, “Vacuum sealed ultra miniature fiber-optic pressure sensor using white light interferometry”, IEEE Transducers’03, pp. 1063-1066, Boston, USA, 2003.
[11] C. E. Lee, W. N. Gibler, R. A. Atkins and H. F. Taylor, “In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors”, Journal of Lightwave Technology, Vol. 10, pp. 1376-1379, 1992.
[12] I.R. Matlas, F.J. Arregui, R.O. Claus and K.L. Cooper, “Molecularly self-assembled optical fiber sensors”, Technical Digest of IEEE Sensors Conference, Orlando USA, Vol. 1, pp.198-202, 2002.
[13] F. J. Arregui, Y. Liu, I. R. Matias and R. O. Claus, “Optical fiber humidity sensor using a nano Fabry-Perot cavity formed by the ionic self-assembly method”, Sensors and Actuators B, Vol. 59, pp. 54-59, 1999.
[14] F.J. Arregui, I.R. Matlas, K.L. Cooper and Richard O. Claus, “Simultaneous Measurement of Humidity and Temperature by Combining a Reflective Intensity-Based Optical Fiber Sensor and a Fiber Bragg Grating”, IEEE Sensors Journal, Vol.2, pp.482-487, 2002.
[15] F. J. Arregui, R. O. Claus, K. L. Cooper, F.-V. Carlos and I. R. Matias, “Optical fiber gas sensor based on self-assembled gratings”, Journal of Lightwave Technology, Vol. 19, pp. 1932-1937, 2001.
[16] F.J. Arregui, I.R. Matias and R.O. Claus, “Optical fiber gas sensors based on hydrophobic alumina thin films formed by the electrostatic self-assembly monolayer process”, IEEE Sensors Journal , pp.56-61, 2003.
[17] R. L Heredero, S. Martin and et al, “A study of optical property of photopolymer Fabry-Perot microcavities by a dual-wavelength fiber optic architecture”, Measurement Science and Technology, Vol. 13, pp.1094-1099, 2002.
[18] J.W. Borinski, C.D. Boyd, J.A. Dietz, J.C. Duke and M.R. Home, “Fiber optic sensors for predictive health monitoring”, Autotestcon Proceedings, IEEE, pp.250–262, 2001.
[19] S. Dhawan, “Direct Measurements of Skin Friction”, NACA Conference TN 2567, 1953.
[20] L.F. East, “Measurement of Skin Friction at Low Subsonic Speeds by the Raxor-Blade Technique”, R&M 525, Aero. Res. Counc. London, 1966.
[21] J.H. Hool, “Measurement of Skin Friction Using Surface Tubes”, Airor. Eng., Vol. 28, pp.52, 1956.
[22] Chang Liu, Yu-Chong Tai, Jin-Biao Huang and Chin-Ming Ho, “Surface-Micromachined Thermal Shear-Stress Sensors”, ASME Application of Microfabrication to Fluid Mechanics, Chicago, pp.9-15, 1994.
[23] Martin A. Schmidt, Roger T. Howe, Stephen D. Senturia and Joseph H. Haritonidis, “Design and Calibration of a Microfabricated Floating Element Shear-Stress Sensor”, IEEE Transactions of Electron Devices, Vol 35, pp.750-757, June, 1988.
[24] Javard Shajii, Kay-Yip Ng and Martin A. Schmidt, “A Microfabricated Floating-Element Shear Stress Sensor Using Wafer-Bonding Technology”, Journal of Microelectromechanical Systems, Vol. 1, pp.89-94, 1992.
[25] Tao Pan, Daniel Hyman, Mehran Mehregany, Eli Reshotko, and Brian Willis,“Calibration Of Microfabricated Shear Stress Sensors”, IEEE Transducers’95, pp.443-446, 1995.
[26] Byung-Ho Jo, Linda M. Van Lerberghe, Kathleen M. Motsegood and David J. Beeb, “Three-Dimensional Micro-Channel Fabrication in Polydimethysiloxane (PDMS) Elastomer”, Journal of Microelectromechanical Systems, Vol. 9, pp.76-81, 2000.
[27] K. Tsukada, S. Sakai, K. Hase and H. Minamitani, “Development of catheter-type optical oxygen sensor and applications to bioinstrumentation”, Biosensors and Bioelectronics, Vol. 18, pp. 1439-1445, 2003.
[28] X. Liu and W. Tan, Analytical Chemistry, pp.5054-5059, 1999.
[29] J. Cordek, X. Wang and W. Tan, “Direct immobilization of glutamate dehydrogenase on optical fiber probe for ultrasensitive glutamate detection”, Analytical Chemistry, Vol. 71, pp. 1529-1533, 1999.
[30] J. L. Gonzalez-Mora, F. A. Martin, D. Rojas-Diaz, S. Hernandez, I. Ramos-Perez, V. D. Rodriguez and M. A. Castellano, “In vivo spectroscopy: a novel approach for simultaneously estimating nitric oxide and hemodynamic parameter in the rat brain”, Journal of Neuroscience Methods, Vol. 119, pp. 151-161, 2002.
[31] C.J. Lin, S.C. Lin, Y.T. Tseng, C.S. Yang and F.G. Tseng, “Nano Biomolecular detection in Situ by Fiber-Optic Fabry-Perot Interferometry”, Seeing at the NanoScale, UC Santa Barbara, 2003.
[32] C.J. Lin, Y.T. Tseng, S.C. Lin, C.S. Yang, M.C. Wang and F.G. Tseng, “A novel in-vitro and in-situ immunoassay biosensor based on fiber-optic Fabry-Perot interferometry”, EWOFS’04, Santander, Spain, 2004.
[33] J.M. Vaughan and M. A. Dphil, The Fabry-Perot Interferometer: History, Theory, Practice and Applications, Chapter 3.
[34] Daniel Malacara and Brain J. Thompson, Handbook of Optical Engineering, Chapter 2 and Chapter 11, Marcel Dekker, 2001.
[35] John Dakin and Brian Culshaw, Optical Fiber Sensors Volume 1: Principles and Components, Chapter 2,7and 8, Artech House, 1988.
[36] 李正中, 薄膜光學與鍍膜技術, 藝軒出版社, 2001。
[37] Al Sarawi, S.F., D. Abbott, P.D. Franzon, “A review of 3-D packaging technology”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, (21), pp. 2-14, 1998.
[38] S. Linder, H. Baltes, F. Gnaedinger and E. Doering, “ Fabrication technology for wafer through-hole interconnections and three-dimensional stacks of chip and wafer”, Proceedings of IEEE MEMS, pp. 349-354, 1994.
[39] N T Nguyen, E Boellaard, N P Pham, V G Kutchoukov, G Cracium, and P M Sarro, “ Through-wafer copper electroplating for three-dimensional interconnects”, Journal of Micromechanics and Microengineering, Vol. 12, pp.395-399, 2002.
[40] Seng Joon Ok and Daniel Baldwin, “High density, aspect ration through-wafer electrical interconnect vias fro low cost, generic modular MEMS packaging”, Proceedings of Advanced Packaging Materials, IEEE, pp. 8-11, 2002.
[41] Dong-Weon Lee, Takahito Ono, Takashi Abe and Masayoshi Esashi, “Microprobe array with electrical interconnection for thermal imaging and data storage”, Journal of Microelectromechanical Systems, Vol. 11, pp. 215-221, 2002.
[42] R.Kiumi, J. Yoshioka, F. Kuriyama, N. Saito and M. Shimoyama, “Process development of electroplate bumping for ULSI flip chip technology”, Proceedings of Electronic Components and Technology Conference, IEEE, pp. 711-716, 2002.
[43] Gray Solomon, Semitool, Kalispell and Montana, “Electrochemically deposited solder bumps for wafer-level packaging”, Solid State Technology, April, pp. 83-86, 2001.
[44] R.C. Jorgenson and S.S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance”, Sensors and Actuators B, Vol. 12, pp. 213-220, 1993.
[45] Radan Slavik, Jiri Homola and Jiri Ctyroky, “Miniaturization of fiber optic surface plasmon resonance sensor”, Sensors and Actuators B, Vol. 51, pp. 311-315.
[46] Radan Slavik, Jiri Homola and Jiri Ctyroky, “Single-mode optical fiber surface plasmon resonance sensor”, Sensors and Actuators B, Vol.54, pp. 74-79, 1999.
[47] Radan Slavik, Jiri Homola, Jiri, Ctyroky and Eduard Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance”, Sensors and Actuators B, Vol.74, pp. 106-111, 2001.
[48] M. Piliarik, J. Homola, Z. Manikova and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber”, Sensors and Actuators B, Vol.90, pp. 236-242, 2003.
[49] Louis A. Obando, Darcy J. Gentleman, John R. Holloway and Karl S. Booksh, “Manufacture of robust surface plasmon resonance fiber optic based dip-probes”, Sensors and Actuators B, Vol.100, pp. 439-449, 2004.