簡易檢索 / 詳目顯示

研究生: 陳俊男
Chen, Chun-Nan
論文名稱: 白光偏壓對空間電荷限制光伏元件量子效率之影響
Effects of White Light Bias on Incident Photon-to-Electron Collection Efficiency Measurement of Space-Charge-Limited Photovoltaic Devices
指導教授: 洪勝富
Horng, Sheng-Fu
口試委員: 孟心飛
冉曉雯
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 77
中文關鍵詞: 有機太陽能電池光電轉換效率空間電荷限制
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討空間電荷限制光伏元件正確的光電轉換效率(Incident photon-to-electron conversion efficiency, IPCE)量測方式,主要量測以P3HT與PCBM混合作為主動層之有機高分子太陽能電池。因為有機高分子材料受空間電荷限制電流(space charge limit current, SCLC)效應影響,導致有機高分子太陽能電池之電流對光強度關係為非線性關係,使用微弱單頻光的一般IPCE量測方法無法精確得到有機高分子太陽能電池真實的IPCE,因此在IPCE量測系統外加白光作為光偏壓,使元件操作於高光強下進行IPCE量測。因為白光是由許多波長組合而成,能否正確地使用作為光偏壓是個需驗證的問題;本文使用藍光、綠光和橘光發光二極體 (light-emitting diode , LED)驗證白光對元件的影響是否等效特定波長對元件的影響。
    使用兩種正結構元件與兩種反結構元件驗證白光作為光偏壓的正確性;照光強度越強會使得SCLC效應越明顯導致IPCE值下降;由實驗結果可知白光可正確作為光偏壓而且量測有機高分子太陽能電池真實IPCE時必須使用白光光偏壓。


    We developed an easy and accurate method for incident photons-to-electrons conversion efficiency(IPCE)measurement of space-charge-limited (SCL) photovoltaic devices. An extra white light bias is usually introduced in IPCE system to obtain the correct IPCE of SCL devices since the relationship between current and incident light intensity is nonlinear. However, the validity and nessecity of the extra light bias requires further proof. Therefore, we used blue, green and orange light-emitting diode (LED) to verify the validity and nessecity.
    The validity and necessity of white light bias were examined in both conventional and inverted organic solar cell. The white light is proven be valid as light bias correctly and necessary in the IPCE measurement system to obtain the accurate IPCE of SCL photovoltaic devices from the experiment results. SCL effect also appears to be more significant under stronger light illumination.

    摘 要 I ABSTRACT II 誌謝 III 目 錄 VII 圖目錄 IXIX 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.1.1 前言 1 1.1.2 太陽能電池發展 1 1.1.3 有機太陽能電池發展歷程 2 1.1.4 有機太陽能電池的結構演進 3 1.2 研究動機 5 1.2.1 有機共軛高分子太陽能電池的優點 5 1.2.2 P3HT與PCBM混合之有機高分子太陽能電池 6 1.2.3 外加白光偏壓IPCE量測校正與分析動機 7 1.3 論文架構 7 第二章 實驗原理 9 2.1 太陽能電池元件基本原理 9 2.1.1 太陽能電池基礎模型 9 2.1.2 太陽能電池操作原理 12 2.1.3 太陽能電池基本參數 15 2.1.4 有機太陽能電池內部機制 17 2.2 有機高分子材料特性 20 2.2.1 有機高分子材料簡介 20 2.2.2 主動層材料介紹 21 2.2.3 有機高分子載子傳輸理論 22 2.3 本論文研究之元件結構 23 第三章 實驗方法與流程 25 3.1 正結構元件製作流程 25 3.1.1 透明ITO玻璃基板圖樣化 30 3.1.2 透明ITO玻璃基板清洗步驟 31 3.1.3 正結構元件電洞傳輸層成膜 32 3.1.4 正結構元件主動層成膜 33 3.1.5 正結構元件電子傳輸層成膜 34 3.1.6 正結構元件陰極金屬蒸鍍 28 3.1.7 正結構元件封裝 28 3.1.8 正結構元件電性量測 35 3.2 反結構元件製作流程 30 3.2.1 透明ITO玻璃基板圖樣化 30 3.2.2 透明ITO玻璃基板清洗步驟 31 3.2.3 反結構元件電子傳輸層成膜 32 3.2.4 反結構元件主動層成膜 33 3.2.5 反結構元件電洞傳輸層成膜 34 3.2.6 反結構元件陽極金屬蒸鍍 34 3.2.7 反結構元件封裝 35 3.2.8 反結構元件電性量測 35 3.3 光電轉換效率量測系統 36 3.3.1 光電轉換效率量測原理 36 3.3.2 光電轉換效率量測系統構造與使用儀器 37 3.3.3 檢測IPCE系統準確性 39 3.4 驗證白光作為光偏壓正確性量測方式 41 3.4.1 外加白光偏壓IPCE量測系統 41 3.4.2 使用LED單頻光驗證方式 41 3.4.3 驗證白光作為光偏壓之正確性與均勻性 42 第四章 實驗結果與討論 45 4.1 有機高分子太陽能電池光電轉換效率量測方式 45 4.2 使用白光作為光偏壓之正確性 47 4.2.1 為何使用白光作為偏壓源 47 4.2.2 有無白光光偏壓對有機高分子太陽能電池元件之IPCE影響 47 4.2.3 使用LED驗證白光光偏壓之正確性 48 4.3 白光作為光偏壓對正結構太陽能電池影響 49 4.3.1 白光光偏壓對無電子傳輸層之正結構太陽能電池影響 49 4.3.2 白光光偏壓對有電子傳輸層之正結構太陽能電池影響 52 4.3.3 白光光偏壓對有電子傳輸層之正結構太陽能電池隨時間變化影響 56 4.4 白光作為光偏壓對反結構太陽能電池影響 63 4.4.1 白光光偏壓對使用碳酸銫作為電子傳輸層之反結構太陽能電池影響 63 4.4.2 白光光偏壓對使用氧化鋅作為電子傳輸層之反結構太陽能電池影響 67 4.4.3 溫度對白光偏壓於氧化鋅作為電子傳輸層之反結構太陽能電池影響 71 第五章 實驗總結與未來發展 73 參考文獻 74

    1. D. M. Chapin, C. S. Fuller, and G.L. Pearson, “A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys. 25, 676 (1954).
    2. C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48, 183 (1986)
    3. B. O’Regan and M. A. Grätzel, “A low cost, high efficiency solar cell based on
    dye-sensitized colloidal TiO2 films,” p Nature 353, 737 (1991).
    4. G. Yu, K. Pakbaz, and A. J. Heeger, “Semiconducting polymer diodes: Large size low cost photodetectors with excellent visible-ultraviolet sensitivity,” Appl. Phys. Lett. 64, 3422 (1994).
    5. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005)
    6. K. Kim, J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Role of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics” Appl. Phys. Lett. 90, 163511 (2007)
    7. K.M.Coakley and M.D.McGehee, “Conjugated polymer photovoltaic cells,” Chem. Mater.16, 4533 (2004)
    8. Harald Hoppe, and Niyazi Serdar Sariciftci,“Organic solar cell: An review,”J.Mater. Res., Vol. 19, No. 7, Jul 2004.
    9. C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48, 183(1986)
    10. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).
    11. Kyungkon Kim, Jiwen Liu, Manoj A. G. Namboothiry, and David L. Carroll,“Role of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaic,” Appl. Phys. Lett. 90, 163511 (2007).
    12. Vishal Shrotriya, Gang Li, Yan Yao, Tom Moriarty, Keith Emery,* and Yang Yang*, “Accurate Measurement and Characterization of Organic Solar Cell, ” Adv. Funct. Mater. 16, 2016(2006)
    13. V.D. Mihailetchi, J. Wildeman, and P.W.M. Blom, “Space-Charge Limited Photocurrent,” Phys. Rev. Lett. 94, 126602 (2005)
    14. Harald Hoppe, and Niyazi Serdar Sariciftci,“Organic solar cell: An review,”J.Mater. Res., Vol. 19, No. 7, Jul 2004.
    15. R.N. Marks, J.J.M. Halls, D.D.C. Bradley, R. H. Friend, A. B. Holmes, J. Phys.:Condens. Matter. 6, 1379 (1994)
    16. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M.T. Rispens, L. Sanchez, J. C. Hummelen, and T Fromherz, “ The influence of materials work function on the open circuit voltage of plastic solar cells,” Thin Solid Film, 403-404,368 (2002).
    17. H. Kim, S-H. Jin, H. Suh, and K. Lee, “Origin of the open circuit voltage in conjugated polymer-fullerene photovoltaic cells,” In Organic Photovoltaics IV, edited by Z.H. Kafafi, and P.A. Lane, Proceedings of the SPIE, Vol. 5215, (SPIE, Bellingham, WA, 2004), p. 111.
    18. C. J. Brabec, S. E. Shaheen, C. Winder, and N. S. Sariciftci, “Effect of LiF/metal electrodes on the performance of plastic solar cells,” Appl. Phys. Lett. 80, 1288 (2002)
    19. wikipedia (http://en.wikipedia.org/wiki/Solar_radiation)
    20. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell,” Appl. Phys. Lett. 68, 3120 (1996)
    21. Theander, A. Yartsev, D. Zigmantas, V. Sundström, W. Mammo, M. R. Anderson, and O. Inganäs, “Photoluminescence quenching at a polythiophene/C60 heterojunction,” Phys. Rev. B, 61, 12957 (2000).
    22. T. J. Savenije, J. M. Warman, and A.Goossens, “Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer,” Chem. Phys. Lett. 287, 148 (1998)
    23. A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldman, U. Scherf, E. Harth, A. Gügel, and K. Müllen, “Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures,” Phys. Rev. B, 59, 15346 (1999)
    24. K. M. Coakley and M. D. McGehee, “Conjugated polymer photovoltaic cells,”Chem. Mater. 16, 4533 (2004).
    25. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M.W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P.Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature, 401, 685 (1999).
    26. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. V. Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk. Nat. Mater. 2, 678 (2003)
    27. H. Hoppe, and N. S. Sariciftci, “ Organic solar cells: An overview,” J. Mater. Res. 19, 1924 (2004)
    28. N. F. Mott and D. Gurney. Electronic Processes in Ionic Crystals. Oxford,New York, 1940.
    29. J. Frenkel, “On pre-breakdown phenomena in insulators and electric semiconductors,” Phys. Rev. 54, 647 (1938).
    30. D. M. Pai, “Transient photoconductivity in poly(N-vinylcarbazole),” J. Chem. Phys.52, 2285 (1970).
    31. P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, “Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene),” Phys. Rev. B 55, 656 (1997).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE