研究生: |
王暉寰 Wang, Hui Huan |
---|---|
論文名稱: |
以一具雜訊塑型能力之連續漸進式類比數位轉換器為量化器之連續時間三角積分調變器 A Continuous-Time ΣΔ Modulator with a Noise-Shaped SAR Quantizer |
指導教授: |
黃柏鈞
Huang, Po Chiun |
口試委員: |
李泰成
Lee, Tai Cheng 洪浩喬 Hong, Hao Qiao 林宗賢 Lin, Zong Xian |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 連續時間三角積分調變器 、連續漸進式類比數位轉換器 |
外文關鍵詞: | CTDSM, SAR |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
連續時間三角積分調變器,由於其省電,並具有反摺疊失真濾波器的訊號轉移函數,因而被廣泛使用於單晶片系統設計中。但礙於在使用高位元數量化器的設計中,動態元件匹配電路會產生過長的延遲,同時相當耗費面積,因此限制了調變器中所使用的量化器解析度。為了提升調變器的解析度,就必須使用更高過取樣率的設計,也因此整個調變器必須操作於更高的頻率底下,進而增加整個系統的功耗。
在本論文中提出了將一階雜訊塑型概念加入一截斷部分輸出量化器中的方法。架構包含了一個三階迴路濾波器、六位元連續漸進式類比數位轉換器、三位元電流導向式數位類比轉換器與三位元動態元件匹配電路,藉由使用雜訊塑型技巧,將原本應有六位元的解析度降至三位元而不會影響調變器性能。在本設計中,藉由將動態元件匹配電路延遲由回授路徑中移除,電路可採用延遲較長卻更節省面積的架構,而一階雜訊塑型的功能,則藉由連續漸進式類比數位轉換器中的電容數位類比轉換器實現,可降低系統實現該方法所需要的硬體。
本作品使用台積電90奈米一般用途互補式金氧半製程實現,調變器的頻寬為1.92MHz,取樣頻率為61.44MHz,量測結果在輸入差動訊號為0.8V的峰對峰值底下,得到了72.2dB的訊號對雜訊失真比,而整個電路的功耗為2.92mW,整體調變器的FOM為229fJ/conv.。
Continuous-time ΣΔ modulators are popularly used in SOC due to its low power consumption and anti-aliasing filter-embedded signal transfer function. However, the quntizers’ resolution which is limited by hardware cost and extra time delay of dynamic element matching circuit. To further increase modulators resolution, higher OSR was used in conventional designs which led to high power consumption of the whole system.
In the proposed CTDSM, we construct an output-truncated SAR which has first-order noise-shaping as the quantizer in the CTDSM. The CTDSM consists of a 3rd loop filter, a 6 bits SAR ADC, a 3-bit current-steering DAC and a 3-bit DEM circuit. The 3-bit output truncated doesn’t degrade the modulator’s performance much due to the first order noise-shaping. Since the DEM function in our new arrangement is not in series of loop operation, DEM circuit with longer time delay but small area could be used. In the meanwhile, the DEM’s number of bits decrease from 6 to 3. The noise-shaped mechanism is realized by the capacitor DAC in SAR and consumes small area.
This work was realized in TSMC 90nm general purpose CMOS process. The modulators bandwidth is 1.92MHz with clock rate of 61.44MHz. The measurement result shows it achieves 72.2dB SNDR with 0.8Vpp,diff input signal. The CTDSM power consumption is 2.92mW, resulting in FOM of 229fJ/conv.
[1] Y. Ke, J. Craninckx, and G. Gielen, “A Design Approach for Poweroptimized Fully Reconfigurable ΔΣ A/D Converter for 4G Radios,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 3, pp. 229–233, Mar. 2008.
[2] Ranjbar, M. Mehrabi, A. Oliaei, O. Carrez, F., "A 3.1 mW Continuous-Time ΔΣ Modulator With 5-Bit Successive Approximation Quantizer for WCDMA," IEEE J. Solid-State Circuits , vol.45, no.8, pp.1479,1491, Aug. 2010
[3] Chun-Cheng Liu, Soon-Jyh Chang, Guan-Ying Huang, Ying-Zu Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," IEEE J. Solid-State Circuits , vol.45, no.4, pp.731,740, April 2010
[4] S.-W.M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mWasynchronous
ADC in 0.13- m CMOS,” IEEE J. Solid-State Circuits, vol.41, pp. 2669–2680, Dec. 2006.
[5] Liu, L. Li, D. Ye, Y. Chen, L. Wang, Z., "A 95dB SNDR Audio ΔΣ Modulator in 65nm CMOS," Custom Integrated Circuits Conference (CICC), 2011 IEEE , vol., no., pp.1,4, 19-21 Sept. 2011
[6] Hung-Chieh Tsai, Chi-Lun Lo, Chen-Yen Ho, Yu-Hsin Lin, "A 64-fJ/Conv.-Step Continuous-Time ΣΔ Modulator in 40-nm CMOS Using Asynchronous SAR Quantizer and Digital ΔΣ Truncator," IEEE J. Solid-State Circuits , vol.48, no.11, pp.2637,2648, Nov. 2013
[7] W. Bennet, “Spectra of Quantized Signals,” Bell Syst. Tech. J., vol. 27, no. 4, pp. 446–472, 1948
[8] W. Chou and R. M. Gray, “Dithering and Its Effects on Sigma Delta and Multistage Sigma Delta Modulation,” in Proc. IEEE Int. Symp. Circuits Syst., May 1990, vol. 3, pp. 368–371.
[9] W.L. Lee, "'A Novel Higher Order Interpolative Modulator Topology for High Resolution Oversampling A/D Converters;' Master's Thesis, Massachusetts Institute of Technology, Cambridge, MA. June 1987.
[10] Adams, R.; Nguyen, K.Q., "A 113-dB SNR Oversampling DAC with Segmented Noise-Shaped Scrambling," IEEE J. Solid-State Circuits , vol.33, no.12, pp.1871,1878, Dec 1998
[11] T. W. Kwan, R. W. Adams, and R. Libert, “A Stereo Multi-Bit ΣΔ D/A with Asynchronous Master-Clock Interface,” in IEEE ISSCC Dig. Tech. Papers, vol. 39, Feb. 1996, pp. 226–227.
[12] R. T. Baird and T. S. Fiez, “Linearity Enhancement of Multibit ΣΔ A/D and D/A Converters Using Data Weighted Averaging,” IEEE Trans. Circuits Syst. II, vol. 42, pp. 753–762, Dec. 1995.
[13] X.-F. Chen. “A Wideband Low-Power Continuous-Time Delta-Sigma Modulator for Next Generation Wireless Applications.”, Ph.D. thesis, Oregon State University,American,2007.
[14] J. Cherry and W. Snelgrove, “Excess Loop Delay in Continuous-Time Delta-Sigma Modulators,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 46, no. 4, pp. 376–389, Apr. 1999.
[15] M. Keller, A. Buhmann, J. Sauerbrey, M. Ortmanns, and Y. Manoli, “A Comparative Study on Excess-Loop-Delay Compensation Techniques for Continuous-Time Sigma-Delta Modulators,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 11, pp. 3480–3487, Dec. 2008.
[16] R.Schreier, The Delta-Sigma Toolbox for Matlab, Oregon State Univ. Corvallis,Nov.1995 .
[17] G. Zheng; Mohanty, S.P.; Kougianos, E., "Design and Modeling of A Continuous-Time Delta-Sigma Modulator for Biopotential Signal Acquisition: Simulink vs. Verilog-AMS Perspective," Computing Communication & Networking Technologies (ICCCNT), 2012 Third International Conference on , vol., no., pp.1,6, 26-28 July 2012
[18] R. Hogervorst et al., “A Compact Power-Efficient 3 V CMOS Rail-to-Rail Input/Output Operational Amplifier for VLSI Cell Libraries,” IEEE J. Solid-State Circuits, vol. 29, no. 12, pp. 1505–1513, Dec. 1994.
[19] Tai-Haur Kuo, Kuan-Dar Chen, Horng-Ru Yeng, "A Wideband CMOS Sigma-Delta Modulator with Incremental Data Weighted Averaging," IEEE J. Solid-State Circuits , vol.37, no.1, pp.11,17, Jan 2002
[20] D. Lee, and T. Kuo, “Advancing Data Weighted Averaging Technique for Multi-Bit Sigma Delta Modulators,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 54, pp. 838-842, Oct. 2007.
[21] E.N.Aghdam, P. Benabes, J. abbasszadeh “Completely First Order and Tone Free Partitioned Data Weighted Averaging Technique Used in a Multibit Delta Sigma Modulator ", European Conference on Circuit Theory and Design, , ECCTD 2009 .
[22] R. Radke, A. Eshraghi, and T. S. Fiez, “A Spurious-Free Delta-Sigma DAC Using Rotated Data Weighted Averaging,” Proc. IEEE Custom Integrated Circuits, pp. 125–128, May 1999.
[23] X. Ma, J. Xu, and X. Wu, “Dual Cycle Shift Data-Weighted Averaging Technique for Multi-Bit Sigma-Delta Modulators,” IEEE Int. Conf. of Electron Devices and Solid-State Circuits, pp. 174-177, Dec. 2009.
[24] D. H. Lee, Y. H. Lin, and T. H. Kuo, “Nyquist-Rate Current-Steering Digital-to-Analog Converters with Random Multiple Data-Weighted Averaging Technique and QN Rotated Walk Switching Scheme,” IEEE Trans. Circuits Syst. Ⅱ, Express Briefs, vol. 53, no. 11, pp. 1264-1268, Nov. 2006.
[25] Y.-S. Shu, et al., “A 28fJ/conv-step CT ΔΣ Modulator with 78dB DR and 18MHz BW in 28nm CMOS Using a Highly Digital Multibit Quantizer,” ISSCC Dig. Tech. Papers, pp. 268-269, Feb. 2013.