簡易檢索 / 詳目顯示

研究生: 王暉寰
Wang, Hui Huan
論文名稱: 以一具雜訊塑型能力之連續漸進式類比數位轉換器為量化器之連續時間三角積分調變器
A Continuous-Time ΣΔ Modulator with a Noise-Shaped SAR Quantizer
指導教授: 黃柏鈞
Huang, Po Chiun
口試委員: 李泰成
Lee, Tai Cheng
洪浩喬
Hong, Hao Qiao
林宗賢
Lin, Zong Xian
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 75
中文關鍵詞: 連續時間三角積分調變器連續漸進式類比數位轉換器
外文關鍵詞: CTDSM, SAR
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 連續時間三角積分調變器,由於其省電,並具有反摺疊失真濾波器的訊號轉移函數,因而被廣泛使用於單晶片系統設計中。但礙於在使用高位元數量化器的設計中,動態元件匹配電路會產生過長的延遲,同時相當耗費面積,因此限制了調變器中所使用的量化器解析度。為了提升調變器的解析度,就必須使用更高過取樣率的設計,也因此整個調變器必須操作於更高的頻率底下,進而增加整個系統的功耗。
    在本論文中提出了將一階雜訊塑型概念加入一截斷部分輸出量化器中的方法。架構包含了一個三階迴路濾波器、六位元連續漸進式類比數位轉換器、三位元電流導向式數位類比轉換器與三位元動態元件匹配電路,藉由使用雜訊塑型技巧,將原本應有六位元的解析度降至三位元而不會影響調變器性能。在本設計中,藉由將動態元件匹配電路延遲由回授路徑中移除,電路可採用延遲較長卻更節省面積的架構,而一階雜訊塑型的功能,則藉由連續漸進式類比數位轉換器中的電容數位類比轉換器實現,可降低系統實現該方法所需要的硬體。
    本作品使用台積電90奈米一般用途互補式金氧半製程實現,調變器的頻寬為1.92MHz,取樣頻率為61.44MHz,量測結果在輸入差動訊號為0.8V的峰對峰值底下,得到了72.2dB的訊號對雜訊失真比,而整個電路的功耗為2.92mW,整體調變器的FOM為229fJ/conv.。


    Continuous-time ΣΔ modulators are popularly used in SOC due to its low power consumption and anti-aliasing filter-embedded signal transfer function. However, the quntizers’ resolution which is limited by hardware cost and extra time delay of dynamic element matching circuit. To further increase modulators resolution, higher OSR was used in conventional designs which led to high power consumption of the whole system.
    In the proposed CTDSM, we construct an output-truncated SAR which has first-order noise-shaping as the quantizer in the CTDSM. The CTDSM consists of a 3rd loop filter, a 6 bits SAR ADC, a 3-bit current-steering DAC and a 3-bit DEM circuit. The 3-bit output truncated doesn’t degrade the modulator’s performance much due to the first order noise-shaping. Since the DEM function in our new arrangement is not in series of loop operation, DEM circuit with longer time delay but small area could be used. In the meanwhile, the DEM’s number of bits decrease from 6 to 3. The noise-shaped mechanism is realized by the capacitor DAC in SAR and consumes small area.
    This work was realized in TSMC 90nm general purpose CMOS process. The modulators bandwidth is 1.92MHz with clock rate of 61.44MHz. The measurement result shows it achieves 72.2dB SNDR with 0.8Vpp,diff input signal. The CTDSM power consumption is 2.92mW, resulting in FOM of 229fJ/conv.

    關鍵字索引 i 摘要 iv Abstract v 目錄 vi 圖表目錄 viii 第一章 簡介 1 1.1 研究動機 1 1.2 章節簡介 3 第二章 背景介紹 4 2.1三角積分調變器 4 2.1.1 取樣、量化與量化誤差 4 2.1.2 過取樣 7 2.1.3三角積分數據轉換器 8 2.2 三角積分調變器與其架構 11 2.2.1 單迴路單位元量化器之三角積分調變器 11 2.2.2 單迴路多位元量化器之三角積分調變器 15 2.2.3 多級(Mash)三角積分調變器 18 2.3 連續時間三角積分調變器 20 2.3.1 連續與離散時間三角積分調變器間的差異性 20 2.3.2 三角積分調變器中離散時間與連續時間訊號之轉換 23 2.3.3 額外迴路延遲 26 第三章 一使用具雜訊塑型之連續漸進式類比數位轉換器為量化器之連續時間三角積分調變器 28 3.1 系統設計 30 3.2 電路實現 33 3.2.1 主動式電阻電容積分器 33 3.2.2 電流導向式數位類比轉換器 37 3.2.3 動態元件匹配電路(DEM) 45 3.2.4 一截斷輸出且具雜訊塑型功能之連續漸進式類比數位轉換器 50 3.3 模擬結果 59 3.3.1 運算放大器之佈局前模擬結果 59 3.3.2 連續漸進式類比數位轉換器之佈局後模擬結果 60 3.3.3 DEM功能驗證 61 3.3.4 連續時間三角積分調變器之佈局前後模擬結果 62 3.4 量測結果 64 3.4.1 測試環境 65 3.4.2 量測結果 66 第四章 結論與未來工作 71 4.1結論 71 4.2未來工作 71 參考文獻 72

    [1] Y. Ke, J. Craninckx, and G. Gielen, “A Design Approach for Poweroptimized Fully Reconfigurable ΔΣ A/D Converter for 4G Radios,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 3, pp. 229–233, Mar. 2008.

    [2] Ranjbar, M. Mehrabi, A. Oliaei, O. Carrez, F., "A 3.1 mW Continuous-Time ΔΣ Modulator With 5-Bit Successive Approximation Quantizer for WCDMA," IEEE J. Solid-State Circuits , vol.45, no.8, pp.1479,1491, Aug. 2010

    [3] Chun-Cheng Liu, Soon-Jyh Chang, Guan-Ying Huang, Ying-Zu Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," IEEE J. Solid-State Circuits , vol.45, no.4, pp.731,740, April 2010

    [4] S.-W.M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mWasynchronous
    ADC in 0.13- m CMOS,” IEEE J. Solid-State Circuits, vol.41, pp. 2669–2680, Dec. 2006.

    [5] Liu, L. Li, D. Ye, Y. Chen, L. Wang, Z., "A 95dB SNDR Audio ΔΣ Modulator in 65nm CMOS," Custom Integrated Circuits Conference (CICC), 2011 IEEE , vol., no., pp.1,4, 19-21 Sept. 2011

    [6] Hung-Chieh Tsai, Chi-Lun Lo, Chen-Yen Ho, Yu-Hsin Lin, "A 64-fJ/Conv.-Step Continuous-Time ΣΔ Modulator in 40-nm CMOS Using Asynchronous SAR Quantizer and Digital ΔΣ Truncator," IEEE J. Solid-State Circuits , vol.48, no.11, pp.2637,2648, Nov. 2013
    [7] W. Bennet, “Spectra of Quantized Signals,” Bell Syst. Tech. J., vol. 27, no. 4, pp. 446–472, 1948

    [8] W. Chou and R. M. Gray, “Dithering and Its Effects on Sigma Delta and Multistage Sigma Delta Modulation,” in Proc. IEEE Int. Symp. Circuits Syst., May 1990, vol. 3, pp. 368–371.

    [9] W.L. Lee, "'A Novel Higher Order Interpolative Modulator Topology for High Resolution Oversampling A/D Converters;' Master's Thesis, Massachusetts Institute of Technology, Cambridge, MA. June 1987.

    [10] Adams, R.; Nguyen, K.Q., "A 113-dB SNR Oversampling DAC with Segmented Noise-Shaped Scrambling," IEEE J. Solid-State Circuits , vol.33, no.12, pp.1871,1878, Dec 1998

    [11] T. W. Kwan, R. W. Adams, and R. Libert, “A Stereo Multi-Bit ΣΔ D/A with Asynchronous Master-Clock Interface,” in IEEE ISSCC Dig. Tech. Papers, vol. 39, Feb. 1996, pp. 226–227.

    [12] R. T. Baird and T. S. Fiez, “Linearity Enhancement of Multibit ΣΔ A/D and D/A Converters Using Data Weighted Averaging,” IEEE Trans. Circuits Syst. II, vol. 42, pp. 753–762, Dec. 1995.

    [13] X.-F. Chen. “A Wideband Low-Power Continuous-Time Delta-Sigma Modulator for Next Generation Wireless Applications.”, Ph.D. thesis, Oregon State University,American,2007.

    [14] J. Cherry and W. Snelgrove, “Excess Loop Delay in Continuous-Time Delta-Sigma Modulators,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 46, no. 4, pp. 376–389, Apr. 1999.

    [15] M. Keller, A. Buhmann, J. Sauerbrey, M. Ortmanns, and Y. Manoli, “A Comparative Study on Excess-Loop-Delay Compensation Techniques for Continuous-Time Sigma-Delta Modulators,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 11, pp. 3480–3487, Dec. 2008.

    [16] R.Schreier, The Delta-Sigma Toolbox for Matlab, Oregon State Univ. Corvallis,Nov.1995 .

    [17] G. Zheng; Mohanty, S.P.; Kougianos, E., "Design and Modeling of A Continuous-Time Delta-Sigma Modulator for Biopotential Signal Acquisition: Simulink vs. Verilog-AMS Perspective," Computing Communication & Networking Technologies (ICCCNT), 2012 Third International Conference on , vol., no., pp.1,6, 26-28 July 2012

    [18] R. Hogervorst et al., “A Compact Power-Efficient 3 V CMOS Rail-to-Rail Input/Output Operational Amplifier for VLSI Cell Libraries,” IEEE J. Solid-State Circuits, vol. 29, no. 12, pp. 1505–1513, Dec. 1994.

    [19] Tai-Haur Kuo, Kuan-Dar Chen, Horng-Ru Yeng, "A Wideband CMOS Sigma-Delta Modulator with Incremental Data Weighted Averaging," IEEE J. Solid-State Circuits , vol.37, no.1, pp.11,17, Jan 2002

    [20] D. Lee, and T. Kuo, “Advancing Data Weighted Averaging Technique for Multi-Bit Sigma Delta Modulators,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 54, pp. 838-842, Oct. 2007.

    [21] E.N.Aghdam, P. Benabes, J. abbasszadeh “Completely First Order and Tone Free Partitioned Data Weighted Averaging Technique Used in a Multibit Delta Sigma Modulator ", European Conference on Circuit Theory and Design, , ECCTD 2009 .

    [22] R. Radke, A. Eshraghi, and T. S. Fiez, “A Spurious-Free Delta-Sigma DAC Using Rotated Data Weighted Averaging,” Proc. IEEE Custom Integrated Circuits, pp. 125–128, May 1999.

    [23] X. Ma, J. Xu, and X. Wu, “Dual Cycle Shift Data-Weighted Averaging Technique for Multi-Bit Sigma-Delta Modulators,” IEEE Int. Conf. of Electron Devices and Solid-State Circuits, pp. 174-177, Dec. 2009.

    [24] D. H. Lee, Y. H. Lin, and T. H. Kuo, “Nyquist-Rate Current-Steering Digital-to-Analog Converters with Random Multiple Data-Weighted Averaging Technique and QN Rotated Walk Switching Scheme,” IEEE Trans. Circuits Syst. Ⅱ, Express Briefs, vol. 53, no. 11, pp. 1264-1268, Nov. 2006.

    [25] Y.-S. Shu, et al., “A 28fJ/conv-step CT ΔΣ Modulator with 78dB DR and 18MHz BW in 28nm CMOS Using a Highly Digital Multibit Quantizer,” ISSCC Dig. Tech. Papers, pp. 268-269, Feb. 2013.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE