簡易檢索 / 詳目顯示

研究生: 蔡麗雲
Li-Yun Tsai
論文名稱: 乙醯膽鹼對螯蝦逃跑神經迴路的調控
Modulatory effects of acetylcholine on crayfish lateral giant escape command neurons
指導教授: 葉世榮
Shih-Rung Yeh
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 52
中文關鍵詞: 乙醯膽鹼螯蝦電突觸
外文關鍵詞: acetylcholine, crayfish, gap junction, electrical synapse
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去化學突觸(chemical synapse)特性的改變一直被認為是造成生物神經系統可塑性的主要原因,然而,近幾年來有許多的研究者發現神經傳導物質(neurotransmitter)可能造成電突觸(electrical synapse)在神經傳導特性上的改變,這種改變可能也是造成神經可塑性的另一種原因。2000年Alves 等人所發表的一篇文章提供了一些有關這方面的研究與討論。如文獻探討所示,目前已發現許多由化學突觸(chemical synapse)所釋放的神經傳遞物,其中包含穀氨酸(glutamate)、5-羥色胺(serotonin,簡寫5-HT)、多巴胺(dopamine)以及乙醯膽鹼(Acetylcholine,簡寫ACh)會造成電突觸特性的改變。然而整體而言,此領域的研究迄今仍相對少見。
    因此本研究的主要目的在於提供一個螯蝦逃跑神經迴路中的神經傳導物質—乙醯膽鹼可能造成電突觸神經傳導特性改變的證據,並為此提出適當的解釋。研究方法為電生理技術和藥理法,其中包括在突觸前神經細胞內打入小電流並在與其藉由電突觸相連的突觸後神經細胞記錄其反應。另外,乙醯膽鹼及其興奮劑和詰抗劑來觀察電突觸神經傳導特性是否受到改變。研究結果的數據分析方法包括統計分析(平均值、標準差以及線性迴歸)和曲線擬合(最小平方法)。
    研究結果顯示當乙醯膽鹼的其中一種感受器—毒蕈膽鹼類乙醯膽鹼感受器—的興奮劑被加入正在記錄的神經細胞的緩衝液以後,會造成連接前後細胞的電突觸的神經傳導訊號變大。然而,加入乙醯膽鹼的另一種感受器—尼古丁乙醯膽鹼感受器的興奮劑則造成電突觸的神經傳導訊號減少。此外,加入乙醯膽鹼並不會造成電突觸的神經傳導訊號明顯的增加或減少,然而,若先在緩衝液中加入尼古丁乙醯膽鹼感受器的詰抗劑,然後再加入乙醯膽鹼則會造成電突觸的神經傳導訊號明顯增加。因此,我們推測在螯蝦逃跑神經迴路中,乙醯膽鹼透過nAChR 對LG產生抑制作用,但會透過mAChR對LG產生增強作用。
    所以,此研究除了希望能解釋毒蕈膽鹼類乙醯膽鹼感受器和尼古丁乙醯膽鹼感受器是如何在螯蝦逃跑的神經迴路中扮演的角色,也可藉此進一步了解乙醯膽鹼是如何改變電突觸的神經傳導特性。


    中英對照表 1 摘要 4 一. 介紹 6 1.1 研究背景 6 1.2 文獻探討 7 1.3 研究目的 11 二. 材料與研究方法 12 2.1動物準備步驟 12 2.2 電生理實驗 13 2.3 資料分析 14 三. 結果 17 3.1 nAChR興奮劑會造成LG EPSP壓抑,mAChR興奮劑會造成LG EPSP促進 17 3.2 從PAN到LG的電突觸訊號傳遞會受到nAChR興奮劑所壓抑 18 3.3從PAN到LG的電突觸訊號傳遞會受到mAChR興奮劑所增強 19 3.4 LG的輸入阻值與unitary PSP的衰減時間常數受nAChR興奮劑影響而變小 20 3.5 ACh對LG α EPSP的影響 21 3.6 PAN產生衝動所需的最小注入電流不受AChR興奮劑的影響 22 四. 討論 23 4.1 結果總結 23 4.2神經傳導物質(乙醯膽鹼)對電突觸的影響探討 24 4.3 研究上的限制與未來可能的方向 26 圖表 27 參考資料 43

    Antonsen BL, Edwards, DH (2003). Differential dye coupling reveals lateral giant escape circuit in crayfish. J Comp Neurol, 466: 2003.
    Antonsen BL, Edwards DH (2007). Mechanisms of serotonergic facilitation of a command neuron. J Neurophysiol, 98: 3494-3504.
    Alves LA, Nihei OK, Fonseca PC, Campos-de-Carvalho AC, Savino W (2000). Gap junction modulation by extracellular signaling molecules: the thymus model. Brazilian Journal of Medical and Biological Research, 33:457-465.
    Araki M, Nagayama T (2003). Direct chemically mediated synaptic transmission from mechanosensory afferents contributes to habituation of crayfish lateral giant escape reaction. J Comp physiol A, 189:731-739.
    Auerbach JM, Segal M (1996). Muscarinic receptors mediating depression and long-term potentiation in rat hippocampus. Journal of physiology, 492:479-493.
    Barker DL, Murray TF, Siebenaller JF, Mpitsos GJ (1986). Characterization of muscarinic cholinergic recptors in the crab nervous system. Journal of Neurochemistry, 46: 583-588.
    Braun G, Mulloney B (1994). Acetylcholinesterase activity in neurons of crayfish abdominal ganglia. The journal of comparative neurology, 350: 272-280.
    Burrell BD, Sahley CL, Muller KJ (2001). Differential Effects of Serotonin Enhance Activity of an Electrically Coupled Neural Network. J Neurophysiol, 87: 2889–2895.
    Chanson M, Mollard P, Meda P, Suter S, Jongsma HJ (1999). Modulation of Pancreatic Acinar Cell to Cell Coupling during ACh-evoked Changes in Cytosolic Ca2+. The journal of biological chemistry, 274: 282–287.
    Cohen AS, Coussens CM, Raymond CR, Abraham WC (1999). Long-lasting increase in cellular excitability associated with the priming of LTP induction in rat hippocampus. Journal of neurophysiology, 82: 3139-3148.
    Collingridge GL (2003). The induction of N-methyl-D-aspartate receptor-dependent long-term potentiation. Phil. Trans. R. Soc. Lond. B, 358: 635–641.
    Edwards DH, Heitler WJ, Krasne FB (1999). Fifty years of a command neuron: the neurobiology of escape behavior in the crayfish. Trends Neurosci, 22: 153–161.
    Egorov AV, Gloveli T, Müller W (1999). Muscarinic control of dendritic excitability and Ca2+ signaling in CA1 pyramidal neurons in rat hippocampal slice. Journal of Neurophysiology, 82: 1909-1915.
    Ezzeddine Y, Glanzman DL (2003). Prolonged Habituation of the Gill-Withdrawal Reflex in Aplysia Depends on Protein Synthesis, Protein Phosphatase Activity, and Postsynaptic Glutamate Receptors. The journal of neuronscience, 23: 9585-9594.
    Fernández de Sevilla D, Rodrigo-Angulo M, Nuñez A, Buño W (2006). Cholinergic modulation of synaptic transmission and postsynaptic excitability in the rat gracilis dorsal column nucleus. The journal of neuroscience, 26: 4015-4025.
    Fritz S, Kunz L, Dimitrijevic N, Grünert R, Heiss C, Mayerhofer A (2002). Muscarinic Receptors in Human Luteinized Granulosa Cells: Activation Blocks Gap Junctions and Induces the Transcription Factor Early Growth Response Factor-1. The Journal of Clinical Endocrinology and Metabolism, 87:1362–1367.
    Guld C (1962). Cathode Follower and Negative Capacitance as High Input Impedance Circuits. Proc IRE 50: 1912-1927.
    Jaslove SW, Brink PR (1986). The mechanism of rectification at the electrotonic motor giant synapse of the crayfish. Nature, 323:63-65.
    Koh DCI, Armugam A, Jeyaseelan K (2006). Snake venom components and their applications in biomedicine. Cellular and Molecular life sciences, 63:3030-3041.
    Krasne FB, Glanzman DL (1986). Sensitization of the crayfish lateral giant escape reaction. The Journal of neuroscience, 6:1013-1020.
    Krejcí A, Michal P, Jakubík J, Rícný J, Dolezal V (2004). Regulation of signal transduction at M2 muscarinic recptor. Physiological research, 53: 131-140.
    Kumar SS, Faber DS (1999). Plasticity of first-order sensory synapses: interactions between homosynaptic long-term potentiation and heterosynaptically evoked dopaminergic potentiation. J Neurosci, 19: 1620-1635.
    Landisman CE, Connors BW (2005). Long-Term Modulation of Electrical Synapses in the Mammalian Thalamus. Science, 310: 1809-1813.
    Lasater EM, Dowling JE (1985). Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells. Proc. Natl. Acad. Sci. USA, 82: 3025-3029.
    Martin AO, Mathieu MN, Guérineau NC (2003). Evidence Long-Lasting Cholinergic Control of Ga Junctional Communication between Adrena Chromaffin Cells. The journal of neuronscience, 23: 3669-3678.
    Miller MW, Lee SC, Krasne FB (1987). Cooperativity-dependent long-lasting potentiation in the crayfish lateral giant escape reaction circuit. The journal of neuroscience, 7: 1081-1092.
    Miller MW, Vu ET, Krasne FB (1992). Cholinergic Transmission at the First Synapse of the Circuit Mediating the Crayfish Lateral Giant Escape Reaction. Journal of neurophysiology, 68: 2174-2184.
    Pereda AE, Bell TD, Chang BH, Czernik AJ, Nairn AC, Soderling TR, Faber DS (1998). Ca2+/ calmodulin-dependent kinase II mediates simultaneous enhancement of gap-junctional conductance and glutamatergic transmission. Proc. Natl. Acad. Sci. USA, 95:13272-13277.
    Phelan P, Starich TA (2001). Innexins get into the gap. BioEssays, 23: 388-396.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992). 10 Minimization or maximization of functions. In: Numerical recipes in C: the art of scientific computing, edited by Press WH. New York: Cambridge, p. 394-455
    Smith M, Pereda AE (2003). Chemical synaptic activity modulates nearby electrical synapses. PNAS, 100: 4849–4854.
    Takashima A, Niwa M, Nakamura H, Takahata M (1996). Cholinergic transmission from mechanosensory afferent neurons to an identified nonspiking interneuron in the crayfish Procambarus clarkill girard. J. Comp. Physiol. A, 179: 447-454.
    Temme A, Traub O, Willecke K (1998). Downregulation of connexin 32 protein and gap junctional intercellular communication by cytokine-mediated acute-phase response in immortalized mouse hepatocytes. Cell and Tissue Research, 294:345-350.
    Teshiba T, Shamsian A, Yashar B, Yeh SR, Edwards DH, Krasne FB (2001). Dual and Opposing Modulatory Effects of Serotonin on Crayfish Lateral Giant Escape Command Neurons. The Journal of Neuroscience, 21:4523–4529.
    Tsai LY, Tseng SH, Yeh SR (2005). Long-lasting potentiation of excitatory synaptic signaling to the crayfish lateral giant neuron. J Comp Physiol A, 191: 347–354.
    Tsvetkov EA (2001). Gap Junctions: Structure, Functions, and Regulation. Journal of Evolutionary Biochemistry and Physiology, 37: 457-468.
    Ushizawa T, Nagayama T, Takahata M (1996). Cholinergic transmission at mechanosensory afferents in the crayfish terminal abdominal ganglion. J. Comp. Physiol. A, 179: 1-13.
    Van Harreveld A (1936). A physiological solution for freshwater crustaceans. Proc Soc Exp Biol Med, 34:428–432.
    Velazquez JLP, Han D, Carlen PL (1997). Neurotransmitter Modulation of Gap Junctional Communication in the Rat Hippocampus. European Journal of Neuroscience, 9: 2522-2531.
    Wang-Bennett LT, Sovan ML, R. M. Glantz RM (1988). Immunocytochemical studies of the distribution of acetylcholine in the crayfish brain. J Comp Neurol, 273: 330-343.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE