研究生: |
洪隆傑 Lung-Jie Hung |
---|---|
論文名稱: |
鎳鋅鐵氧體與鈦酸鍶鋇複層薄膜結構之電性與磁性研究 Magnetic and Electric Properties in (Ni0.5Zn0.5)Fe2O4/(Ba0.5Sr0.5)TiO3 Multilayer |
指導教授: |
吳泰伯
Tai-Bor Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 磁控濺鍍 、矯頑場 、複層薄膜 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以多靶式磁控濺鍍法鍍製BST/NZF共鍍薄膜以及複層薄膜。使用兩種矽基板(1-10Ω.cm 以及0.003~0.005 Ω.cm)及Pt/Ti(TiO2)/SiO2/Si基板,製作兼具介電性與導磁性之複合薄膜。我們利用低阻值矽晶片,簡化一般MIM(metal-insulator-metal)結構並與Pt電極基板相互比較。以矽晶作為薄膜基板,有利於矽基整合製程。矽基整合製程為利用製成穩定性高、控制容易、技術成熟的半導體製程將薄膜型被動元件整合於單一晶片上,以滿足高頻通訊之被動元件規格之要求。
實驗結果發現,在矽基板與介電薄膜之間會有二氧化矽氧化層之存在,降低整體薄膜電容值。NZF與BST共鍍薄膜會誘發BST於(111)優選方向結晶成長,並在不同鍍膜氣氛下,觀察到通入氧氣時表面粗糙鍍較低、且磁性、電性亦較佳,推測為氧原子緩衝氬原子對薄膜表面之衝擊與填補氧空缺之影響。若改變共鍍薄膜中兩種材料之組合比例,介電常數、磁化量亦會相應改變,其中矯頑場隨BST比例增加而增加,為domain wall pinning之影響。複層薄膜週期增加介電常數會先下降是由於串聯低電容與介面dead layer之效應,而後週期再增加又有些許上升則應來自介面電荷極化的貢獻。飽和磁化量亦受磁性dead layer影響,隨週期上升降低,矯頑場則較單層NZF高但亦隨週期降低,除了受pinning effect影響外亦因晶粒漸小使矯頑場降低。總結以上,本實驗以濺鍍法製成BST、NZF兩相共存薄膜,並藉由改變組成比例、週期,探討磁性、電性變化,以瞭解複層薄膜間的性質,尋求新的應用。
1. N. A. Hill, J. Phys. Chem. B, 104, 6694 (2000).
2. S. Lopatin, I. Lopatina, and I. Lisnevskaya, Ferroelectrics, 162, 63 (1994).
3. T. Kanai, S. I.Ohkashi, and A. Nakajima, Adv. Mater., 13, 487 (2001).
4. B. H. Park, Y. Gim, Y. Fan, and Q. X. Jia, Appl. Phys. Lett. 77, 16 (2000).
5. T. Ayguavives, A. Tombak, and J. P. Maria, “Physical properties of (Ba,Sr)TiO3 thin films used for integrated capacitors in microwave applications”, IEEE (2001).
6. A. Tombak, J. P. Maria, and F.Ayguavives, IEEE Microwave and Wireless Components Letters, 12, 1 (2002).
7. C. M. Carlson, T. V. Rivkin, and P. A. Parilla, Appl. Phys. Lett. 76, 14 (2000).
8. S. Hyun, J. H. Lee, S. S. Kim, and K. Char, Appl. Phys. Lett. 77, 19 (2000).
9. I. Palecchi, G. Grassano, and D. Marre, Appl. Phys. Lett. 78, 2244 (2001).
10. A. Gonochar, V. Andreev, L. Letyuk, A. Shishkanov, V. Maiorov, J. Magn. Magn. Mater. 254 (2003) 544.
11. O.F. Caltun, L. Spinu, and A. Stancu, IEEE Trans. Magn. 37 (4) (2001) 2353.
12. A. Goldman, Handbook of Modern Ferromagnetic Materials, Kluwer Academic Publishers, Boston, USA, 1999.
13. H. Jun, and Y. Mi, J. Zhejiang Univ. Sci. 6B (6) (2005) 580.
14. O.F. Caltun, L. Spinu, and A. Stancu, J. Optoelectronics Adv. Mater. 4 (2) (2002) 337.
15. S.A. Morrison, C.L. Cahill, R. Swaminathan, M.E. McHenry, and V.G. Harris, J. Appl. Phys. 95 (11) (2004) 6392.
16.S. Chikazumi 著,張煦、李學養譯,“磁性物理學”,聯經出版社, (1982).
17.E. C. Snelling, “Soft Ferrites Properties and Applications”, Chemical Rubber Co.,(1969).
18.鄭振東,“實用磁性材料”,第二章,全華科技圖書公司,(1999).
19. A. Goebel ,and J. Balcarek, (2000), "Influence of impurities irregularities of the crystal lattice and particle size on properties of titanium dioxide", 31st International Conference on Coatings Technology, Chrudimi, pp.22-4.
20.金重勳,“磁性技術手冊”,第三章,第十一章,台灣磁性技術協會,(2002).
21. E. W. Gorter: Some Properties of Ferrites in Connection with Their Chemistry, Proc. IRE 43,254 (1955).
22. A.J. Moulson, and J. M. Herbert, “Electroceramics”, Chapman & Hall, London, 1990
23.林振華,“電子材料”,全華科技圖書股份有限公司,(2001).
24.陳皇鈞, “陶瓷材料概論”, 曉園出版社, 1988 年4 月.
25. B. Jaffe, W. R. Cook, Jr. and H. Jaffe, “Piezoelectric ceramics”, Academic Press, India, (1971).
26. E. C. Snelling, and A. D. Giles, “Ferrite for inductors and transformers”, Research Studies Press, (1983).
27. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 17 (2006).
28. G. Srinivasan, „Review on Giant Magnetoelectric effects in Oxide ferromagnetic/ferroelectric Layered Structures“.
29. M. Feibig, J. Phys. D: Appl. Phys. 38, R123 (2005).
30. M. Feibig, and V. V. Eremenko, “Magnetoelectric Interaction PhenoMena in Crystalls”, Kluwer Academic Publishers (2004).
31. P. Curie, J. Physique 3, 393 (1894).
32. N. A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694-6709 (2000).
33. T. H. O’Dell, Phil. Mag. 8, 411 (1963).
34. W. F. J. Brown, R. M. Hornreich, and S. Shtrikman, Phys. Rev. 168, 574 (1968).
35. A. M. J. G. V. Run, D. R. Terrell, and J. H. Scholing, An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9, 1710–-1714 (1974).
36. C. W. Nan, et al. A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer. Appl. Phys. Lett. 81, 3831-3833 (2002).
37. N. Cai, C. W. Nan, J. Zhai, and Y. Lin, Large high-frequency magnetoelectric response in laminated composites of piezoelectric ceramics, rare-earth iron alloys and polymer. Appl. Phys. Lett. 84, 3516-3519 (2004).
38. J. Ryu, Va´squez, A. Carazo, K. Uchino, and H. E. Kim, Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn. J. Appl. Phys. 40, 4948–4951 (2001).
39. G. Srinivasan, et al. Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 65, (134402 ), (2002).
40. H. Zheng, et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661-663 (2004).
41. X. Qi, J. Zhou, and Z. Yue, Adv. Funct. Mater. 14, 9 (2004).
42.丁懿萍, “水準式硬碟中底層參雜對晶粒細化之作用”, 清華大學, 碩士論文, (2001).
43. R.Ravindran, Gangopadhyay, and S. Gangopadhyaya, Appl. Phys. Lett. 89, (263511), (2006).
44. J. Gao, Y. Cui, Z. Yang, Mat. Sci. Eng. B, 110,111–114 (2004).
45. H. S. Cho, M. H. Kim, and H. J. Kim, J. Mater. Res., 9, 9 (1994).
46. S.T.Mahmud, A.K.M. Akther Hossain, A.K.M. Abudul Hakin, J. Magn. Magn. Mater., 305, 269-274 (2006).
47. H. W. Zhang, C. B. Rong, and J. Zhang, Phys. Rev. B 66, (184436), (2002).
48. J. Ding, Y.J. Chen, Y.Shi, and S. Wang, Appl. Phys. Lett. 77, 22 (2006).
49. P. Padmini, T. R. Taylor, M. J. Lefevre, A. S. Nagra, R. A. York, and J. S. Speckb, Appl. Phys. Lett., 75, 20 (1999).
50. C. Zhou and D. M. Newns, J. Appl. Phys. 82 (6), 15 (1997).
51. V. V. Lemanov and A. L. Kholkin, Phys. Solid State 36, 841 (1994).
52. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon, Oxford, (1977).
53. H. Thomas, IEEE Trans. Magn. 5, 874 (1969); Structural Phase Transitions and Soft Modes, edited by E. J. Samuelson (Universitetsvorleiget, Oslo), p. 15.
54. D. Niebieskikwiat, L. E. Hueso, M. B. Salamon, and N. D. Mathur, J. Appl. Phys. 99, (08C903), (2006).
55. M. Izumi, Y. Ogimoto, Y. Okimoto, and T. Manako, Phys. Rev. B 64, (064429), (2001).
56. R. P. Borges, W. Guichard, J. G. Lunney, and J. M. D. Coey, J. Appl. Phys., 89, 7 (2001).
57. J. Yin, J. Ding, and B. Liu, Appl. Phys. Lett. 88, (162502), (2006).
58. J. F. Loffler, J. P. Meier, B. Daudin, and Jean-Philippe, Phys. Rev. B 57, 5 (1998).
59. C. Caizera, and M. Stefanescu, Physica B 327,129–134 (2003).
60. H. E. Zhang, B. F. Zhang, G. F. Wang, X. H. Dong, and Y. Gao, J. Magn. Magn. Mater. 312 126–130, (2007).