簡易檢索 / 詳目顯示

研究生: 陳彥呈
Chern, Yann-Cherng
論文名稱: 鉛鹵鈣鈦礦太陽電池薄膜成長與大面積製程技術研究
Studies in growth mechanism and large area processing of lead-halide perovskite solar cell
指導教授: 洪勝富
Horng, Sheng-Fu
口試委員: 孟心飛
Meng, Hsin-Fei
冉曉雯
Zan, Hsiao-Wen
陳方中
Chen, Fang-Chung
趙宇強
Chao, Yu-Chiang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 138
中文關鍵詞: 鈣鈦礦太陽電池大面積薄膜製程溶液浸潤旋塗法PIN結構刮刀製程
外文關鍵詞: Perovskite solar cells, large scale thin film fabrication, solvent rinsing-spinning technique, PIN structure, blade coating fabrication
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    鈣鈦礦太陽能電池在2009~2016年間效率提升至22.1%達五倍之多,特別是PIN平面結構被認為具備低溫製程可商業化大面積製程的潛力,因此本研究以PIN平面結構之鈣鈦礦太陽電池的薄膜製程與大面積研究為主。
    PIN平面太陽電池以PEDOT:PSS為電洞傳輸層(HTL),CH3NH3PbI3為主動層,PCBM為電子傳輸層(ETL),本研究利用CH3NH3PbI(3-x)Clx作為介面層於電洞傳輸層與主動層之間,CH3NH3PbI(3-x)Clx的抗水性可做為水相的PEDOT:PSS和鈣鈦礦的緩衝層,同時改善二步法溶液製程的PbI2薄膜均勻度,進而形成columnar的CH3NH3PbI3結晶結構,使得短路電流提升超過50%,也證實為載子傳輸效率提升所致。
    大面積太陽電池因以數個電池串接而成,往往受最低短路電流的元件所拖累,因此主動層的均勻度至關重要。本研究以chloroform soaking and spin rinsing induced surface precipitation方法,在主動層表面形成微晶析出,並透過spin rinsing控制膜厚,退火後形成更加均勻且緻密的主動層,最終在3 * 3 cm2 上驗證4 cell array達到10.6%±0.2% 光轉換效率(PCE),此方法相較傳統dripping method,減緩droplet影響且更適合大面積薄膜製程。CF相比toluene有較低molar volume和較低黏滯性,更快與DMSO:DMF precursor solvent互溶,最終實現8 * 8 cm2 均勻鈣鈦礦主動層薄膜。
    Roll to Roll (R2R) compatible solution process被視為大面積鈣鈦礦太陽電池的重要技術,因此本研究以全刮刀二步法溶液製程,製作PIN鈣鈦礦太陽電池,並以HFAM技術改善PbI2表面粗糙度由23.6nm降至2.78nm,提升主動層均勻度與短路電流一致性,而且主動層退火溫度≤100°C,搭配HFAM均可搭配R2R應用,作為大面積製程之製造技術。

    關鍵字:鈣鈦礦太陽電池、大面積薄膜製程、溶液浸潤旋塗法、PIN結構、刮刀製程


    Abstract
    The efficiency of perovskite solar cells had been increased fivefold between 2009 and 2016. In particular, PIN planar structure has been recognized as having great potential for low temperature fabrication and large scale commercial production. Therefore, this study will focus on the investigation of fabrication of perovskite solar cell with PIN planar structure as well as large scale production.
    PIN planar solar cells use PEDOT:PSS as the hole transport layer(HTL), CH3NH3PbI3 as the active layer, and PCBM as the electron transport layer(ETL). In order to improve carrier transport efficiency and crystalline characteristics of the active layer, CH3NH3PbI(3-x)Clx is used in the study as the interface layer between the HTL and the active layer. The hydrophobicity of CH3NH3PbI(3-x)Clx can be used as a buffer layer for the hydrophilic PEDOT:PSS and perovskite. At the same time, it increases the uniformity of PbI2 film in the two-step solution process, forming a columnar CH3NH3PbI3 crystalline structure which enhances the short circuit current to over 50%. This phenomenon had been demonstrated to be caused by the improvement of carrier transport efficiency.
    Furthermore, due to the module are in series formation, and this is often negatively influenced by the worst short circuit current cell. Thus, it is paramount to ensure the uniformity of the active layer of large area solar cells. The present study investigates chloroform soaking and spin rinsing induced surface precipitation method. First, a micro-lattice deposition on the active layer occurs, followed by spin rising to control film thickness. Second, annealing is used to produce an even more uniform and compact active layer. This method results in a 4-cell array with a 10.6%±0.2% photo-conversion efficiency (PCE) on an area of 3*3 cm2. In contrast to the conventional dripping method, reducing droplet affects and is more suitable for large area thin film fabrication. Furthermore, comparing the use of toluene and chloroform as the solvent for the soaking method, the former fails to form uniform film on the 3 *3 cm2 active layer, whereas chloroform can dissolve in the DMSO:DMF precursor solvent faster due to its lower molar volume and viscosity, resulting in an uniform perovskite active layer film area of 8*8 cm2 successfully.
    Currently, roll-to-roll (R2R) compatible solution process is viewed as an important technique for large area perovskite solar cell fabrication. Thus, this present study investigates a blade only coating two-step solution process for fabricating PIN perovskite solar cells, and the study further improves the surface granularity of PbI2 to 2.78nm from 23.6nm using HFAM technique and increases active layer uniformity and short circuit current consistency. Additionally, the annealing temperature of the active layer is ≤100°C, which is compatible with R2R applications using HFAM for large scale manufacturing.

    Keywords: Perovskite solar cells, large scale thin film fabrication, solvent rinsing-spinning technique, PIN structure, blade coating fabrication

    Table of Contents 致謝 i 摘要 ii Abstract iii Table of Contents v List of Figures viii List of Table xv Chapter 1 Introduction 1 1.1 Solar cell: Clean and Sustainable Energy 1 1.1.1 Solar Radiation and Spectrum of AM1.5 2 1.1.2 Solar cell characteristics and theory 5 1.1.3 Development of Solar Cells 8 1.2 Perovskite solar cell 15 1.2.1 Perovskite solar cell history 15 1.2.2 Working principle of PSC 19 Chapter 2 Literature review 24 2.1 Materials of perovskite 24 2.1.1 Crystal structure 24 2.1.2 Electronic structure 26 2.1.3 Mixed-halide perovskites 28 2.2 Device structure 31 2.2.1 NIP PSC 33 2.2.2 PIN PSC 33 2.3 Fabrication method 35 2.3.1 One-step solution process 37 2.3.2 Two-step solution process 41 2.4 Cl-incorporated mixed halide organometal perovskite solar cell 46 2.5 Large area manufactory process for PSC 51 Chapter 3 CH3NH3PbCl3 interlayer for grain control in planar PSCs 56 3.1 Introduction 56 3.2 Experimental 59 3.2.1 Materials 59 3.2.2 Fabrication of perovskite solar cell 60 3.2.3 Characterizations 62 3.3 Results and discussion 63 3.3.1 Characterization of CH3NH3PbCl3 Interlayer 63 3.3.2 Morphology improvement of PbI2 by CH3NH3PbCl3 interlayer 68 3.3.3 Optimization the concentration ratio of MAI and annealing time 71 3.3.4 Comparison of PSC with and without interlayer 75 3.3.5 Effect of short circuit current enhancement 79 3.4 Conclusion 81 Chapter 4 Chloroform soaking and rinsing process for uniform perovskite layer 82 4.1 Introduction 82 4.2 Experimental 85 4.2.1 Materials and device fabrication 85 4.2.2 Characterizations 88 4.3 Results and discussion 89 4.3.1 Rinsed method retard nucleation during annealing process 89 4.3.2 Smooth morphology of CF rinsed perovskite film 92 4.3.3 Optimization of spin speed and annealing time 95 4.3.4 Uniformity of PSCs array and thickness control by rinsing process 99 4.3.5 Lifetime of rinsed PSCs 102 4.3.6 Comparison of toluene and CF as rinsed solvent 103 4.4 Conclusion 106 Chapter 5 HFAM for all blade coating planar perovskite cells 107 5.1 Introduction 107 5.2 Experimental Procedures 109 5.2.1 Materials and device fabrication 109 5.2.2 Characterizations 111 5.3 Results and discussion 112 5.3.1 Two-step blade coating process 112 5.3.2 Improvement of uniformity of PbI2 film by HFAM 116 5.3.3 The effect of HFAM treated PbI2 film on PSCs 118 5.4 Conclusion 123 Chapter 6 Conclusion 124 Reference 126 Publication list and Award 132 List of Figures Fig 1.1 Solar radiation spectrum and a 6000K black body radiation spectrum.[4] 3 Fig 1.2 Schematic diagram of the different AM light spectra.[5] 4 Fig 1.3 Spectral irradiance of AM1.5Direct and AM1.5 Global.[6] 4 Fig 1.4 (a) I-V curves of a solar cell. (Dotted line: dark; solid line: illumination) (b) Equivalent Circuit of Photovoltaic cell.[10] 7 Fig 1.5 The stuctrue of silicon base photovoltaic device. 10 Fig 1.6 Manufacturing process of crystalline type and thin film type silicon PV. 10 Fig 1.7 a-Si solar cell structure with (a) single junction, (b) double junction and (c) triple junction. 11 Fig 1.8 (a) the structure of bilayer heterojunction of OPVs. (b) The structure of bulk-heterojunction of OPVs. 14 Fig 1.9 Best research-cell efficiencies by NREL.[3] 14 Fig 1.10 Three-dimensional structure of perovskite crystal.[25] 17 Fig 1.11 The first solid state perovskite solar cell, consisting of (a) Real device (b) Structure of device (c) Cross-sectional SEM image of the device.(d) Perovskite layer-underlayer-TCO cross-sectional SEM image [22] 18 Fig 1.12 Efficiency of perovskite solar cells and its associated timeline. 18 Fig 1.13 The process of converting light into electric current in a perovskite solar cell.[29] 23 Fig 1.14 The optical absorption of (a) 1st generation, (b) 2nd generation, and (c) perovskite absorber. [39] 23 Fig 2.1 crystal structure of perovskite materials 25 Fig 2.2 Schematic of the perovskite crystal structure with respect to the A, B, and X lattice site and their contribution to the electric structure. [42] 27 Fig 2.3 Band structure of (a) α phase, (b) β phase, (c) γ phase, and (d) δ 27 Fig 2.4 (a) XRD diagram of different halide mixing ratios and (b) Energy level diagram.[30] 29 Fig 2.5 (a) Absorption spectrum of different Br ion mixing ratios and (b) CH3NH3Pb(I1-xBrx)3 bandgap diagram.[30] 30 Fig 2.6 Structure diagrams of different type perovskite solar cells. [50] 32 Fig 2.7 (a) Schematic of dual-source thermal evaporation method (b) Performance comparison of planar PSCs performance with different manufacture process.[25] 36 Fig 2.8 Schematic diagram of Vapor-Assisted Solution Process for perovskite layer deposition.[57] 36 Fig 2.9 SEM images of perovskite films on compact TiO2 annealed at 100 °C with different anneal.[51] 38 Fig 2.10 a) SEM images showing dependence of perovskite coverage on annealing temperature. (b) Perovskite surface coverage as a function of annealing temperature. 39 Fig 2.11 (a) Photoluminescence decay curves of absorber prepared with enhanced-reconstruction method and reference. And (b) J-V curves of PSCs based on the corresponding films. (c) J-V curves of devices with Y-TiO2 compared with undoped TiO2. (d) J-V curves of devices with and without PEIE modification. [27] 40 Fig 2.12 J–V curves for a best-performing cell fabricated by Graetzel group.[24] 42 Fig 2.13 (a) Photo image and (b) J-V curve show poor quality of perovskite films deposited by traditional dipping process in two-step process. [66] 43 Fig 2.14 (a) Schematics of perovskite preparation with 2-step inter-diffuse method. (b) The SEM image of the PbI2 film,(c) the annealed perovskite and (d) the annealed perovskite film. [66] 43 Fig 2.15 X- ray diffractions comparison of perovskite layer prepared by IEP and conventional process. [48] 44 Fig 2.16 The top-view FESEM of FAPbI3-based layer prepared by (a) IEP and (b) conventional method.(c) Representative J-V curves and (d) Histogram of PSCs efficiencies for FAPbI3-based perovksite layer fabricated by IEP and conventional process. [48] 45 Fig 2.17 (a) Schematic of the sequential deposition process of CH3NH3PbI3-xClx. Top view SEM images of the annealed (b) CH3NH3PbI3 and (c) CH3NH3PbI(3‑x)Clx film prepared by sequential deposition method.[67] 48 Fig 2.18 XRD patterns of CH3NH3PbI(3‑x)Clx film and CH3NH3PbI3 films before and after annealing. [67] 49 Fig 2.19 (a) Schematic of relative recombination speed at different type of GBs. (b) Electron−hole recombination dynamics in different materials.[69] 50 Fig 2.20 Side-view SEM image showing the device structure of planar heterojunction perovskite solar cell. [70] 53 Fig 2.21 (a) Picture of the fabricated planar PSCs module (substrate size: 10 cm × 10 cm). (b) Schematic diagram of the series-connected PSCs module. (c) Photocurrent density–voltage (J–V) characteristics of the PSCs module. The inset table shows the photovoltaic performance parameters.[70] 53 Fig 2.22 (a) Schematic diagram of a fully printing perovskite solar cell. 54 Fig 2.23 Photographs and SEM images of different CH3NH3PbI3 films prepared under different humidity of ( a,d) 60%–70%, (b,e) 40%–50%, and (c,f) 15%–25%. Typical J–V characteristics (g) of a flexible perovskite solar cell prepared by blade coating method under humidity of 15%–25%. [58] 55 Fig 3.1 Schematic illustration of the process flow and layer structure of the two-step solution processed perovskite solar cells with CH3NH3PbCl3 interlayer. 61 Fig 3.2 XRD patterns obtained from (a) the CH3NH3PbCl3 interlayer, (b) PbI2 spin-coated onto the CH3NH3PbCl3 interlayer, (c) the CH3NH3PbCl3 after the spin coating of MAI and annealed at 100 °C for 70 min, (d) the reference two-step solution processed CH3NH3PbCl3 without CH3NH3PbCl3 interlayer. 64 Fig 3.3 XPS compositional depth profiles of the CH3NH3PbCl3 perovskite films (a) without and (b) with CH3NH3PbCl3 interlayer. XPS full spectra of the CH3NH3PbCl3 perovskite films after sputtering for 210 seconds were also included as insets. Typical corresponding XPS full spectra of the CH3NH3PbI3 perovskite films after sputtering for 210 seconds (c) without and (d) with CH3NH3PbCl3 interlayer were also included. 67 Fig 3.4 Top-view SEM image of (a) the CH3NH3PbCl3 interlayer on PEDOT:PSS, (b) the PbI2 layer on PEDOT:PSS without the interlayer, (c) the PbI2 layer on CH3NH3PbCl3 interlayer, (d) the reference two-step solution processed perovskite film without CH3NH3PbCl3 interlayer and (e) the two-step solution processed perovskite film with CH3NH3PbCl3 interlayer. The cross-sectional SEM images of the CH3NH3PbCl3 (f) without and (g) with CH3NH3PbCl3 interlayer are also included. 70 Fig 3.5 The measured J-V characteristics of PSCs with CH3NH3PbCl3 interlayer with different MAI concentrations and ensuing annealed at 100 ℃ for 70 min 72 Fig 3.6 The measured J-V characteristics of PSCs with CH3NH3PbCl3 interlayer with optimal MAI concentration at 28 mg ml-1 and annealing at 100 ℃ for different time durations. 74 Fig 3.7 The J-V characteristics of the optimal PSC with CH3NH3PbCl3 interlayer and a reference PSC, optimized at an MAI concentration of 25 mg ml-1 and ensuing annealing at 100 ℃ for 70 min, were shown. 77 Fig 3.8 The J-V curves in both voltage sweeping directions from the optimal PSC with CH3NH3PbCl3 interlayer. For comparison, the J-V curves from a typical PSC without CH3NH3PbCl3 interlayer are also included as inset. 78 Fig 3.9 The IPCEs of the optimal PSCs and the absorption of the corresponding CH3NH3PbCl3 layers with and without CH3NH3PbCl3 interlayer. 80 Fig 4.1 Schematic illustration of the process flow and layer structure of the perovskite solar cells fabricated with CF soaking and rinsing spin. 87 Fig 4.2 XRD patterns obtained from perovskite layers (a) annealed at 90°C for 100 min without CF treatment, and with CF soaking and rinsing followed by annealing at 90°C for (b) 60 min, (c) 80 min and (d) 100 min. The CF spin rinsing speed is 6000 rpm. 91 Fig 4.3 (a-d) Top-view and (e-h) cross-sectional SEM images from perovskite layers (a,e) annealed at 90°C for 100 min without CF treatment, and with CF soaking and rinsing followed by annealing at 90°C for 80 min (b,f), 100 min (c,g) and 120 min (d,h). The CF spin rinsing speed is 6000 rpm. 93 Fig 4.4 AFM measurements from perovskite layers (a) annealed at 90°C for 100 min without CF treatment, and with CF soaking and rinsing followed by annealing at 90°C for 80 min (b), 100 min (c) and 120 min (d). The CF spin rinsing speed is 6000 rpm. 94 Fig 4.5 A picture of a 8 cm × 8 cm perovskite layer prepared by CF rinsing, exhibiting mirror-like surface and high uniformity on the large scale. 94 Fig 4.6 A picture of the annealed perovskite layers with PEDOT:PSS in peripheral regions removed by ACE to expose the ITO contact pads, revealing high uniformity at centimeter scale; (b) the J-V characteristics of PSCs fabricated with perovskite layers annealed at 90°C for 100 min without CF treatment (■), with CF soaking and rinsing at 6000 rpm followed by annealing at 90°C for 80 min (●), 100 min (▲) and (d) 120 min (▼), respectively. 97 Fig 4.7 The corresponding absorption and IPCEs for the J-V curves shown in Fig 4.6. 98 Fig 4.8 The J-V characteristics of PSCs fabricated with CF treated perovskite layers with rinsing spinning at (a) 1500 rpm, (b) 3000 rpm and (c) 4500 rpm, followed by annealing at 90°C for 100 min. 100 Fig 4.9 Evolution of J-V curves of PSCs fabricated with CF treated perovskite layers with rinsing spinning at 3000 rpm, followed by annealing at 90°C for 100 min. For comparison, the results from untreated reference PSC was included as inset. 102 Fig 4.10 (a) A picture of the annealed perovskite layers with toluene treatment, showing compromised uniformity at centimeter scale; (b) the J-V characteristics of a toluene treated PSC with the best photovoltaic performance. 104 Fig 5.1 schematic diagram of blade coating process and device structure 110 Fig 5.2 layout pattern of 2 x 2 devices in the same substrate. 114 Fig 5.3 (a)The best J-V characteristics of 2 x 2 device and (b) the statistic photovoltaic parameters of all of the device fabricated simultaneously at the same substrate. 115 Fig 5.4 AFM measurements from the PbI2 film (a) annealed at 70°C for 10 min and (b) treated PbI2 film with uniform hot air blowing from an array nozzle for 30 s. 117 Fig 5.5 (a)The J-V curve of PSC with PbI2 layer fabricated by HFAM and the inset show the other PSCs with traditional annealed PbI2. Statistical analysis the uniformity of photovoltaic parameter with (b) Voc, (c) Jsc and (d) PSC. 121 Fig 5.6 The J-V characteristics of the optimal PSC with blade gap for 90um to increase the thickness of perovskite and annealing at 100°C for 60 min. 122 List of Table Table 1.1 Mobility, Diffusion length and Charge lifetime comparison between CH3NH3PbIx and CH3NH3PbI3-xClx 21 Table 2.1 The Highest efficiency perovskite solar cells in the past years with details of device structure. [55] 34 Table 2.2 Bandgap, Average NA Coupling, Pure-Dephasing Time and Nonradiative Electron-Hole Recombination Time for Ideal Cubic MAPbI3 at the R Point and for Σ5 (012) GB with and without Cl Doping at the M Point [69] 50 Table 3.1 Summary of the photovoltaic parameters of PSC with CH3NH3PbCl3 layer measured after its fabrication with different MAI concentrations and annealing durations at 100℃. Each data is obtained from 4 devices fabricated on the perovskite layer. 74 Table 3.2 Comparison of the photovoltaic parameters of the optimal PSCs with and without CH3NH3PbCl3 interlayer as shown in Fig 3.7. 75 Table 4.1 Summary of the photovoltaic parameters of PSC prepared with different rinsing speed and annealing time. Each data is obtained from 4 devices from the perovskite layer. 98 Table 4.2 . The thickness of perovskite layer after annealing at 90°C for 100 min, prepared with different rotational speeds for the spin-coating of precursor solution and CF soaking and rinsing. 101 Table 4.3 Summary of the photovoltaic parameters of PSC measured after its fabrication. 103 Table 5.1 Summary of the photovoltaic parameters of PSC fabricated with different blade gap, MAI and PbI2 concentrations. 113

    Reference
    [1] INTERNATIONAL ENERGY OUTLOOK 2016, (2016).
    [2] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J Am Chem Soc, 131 (2009) 6050-6051.
    [3] NREL, BestResearch-Cell Efficiencies, 2016.
    [4] R.A. Rohde, Solar Radiation Spectrum, Global Warming Art project.
    [5] M.A. Green, Solar cells: operating principle, tecknology, and system applications, Prentice-Hall, (1982).
    [6] C. Honsberg, S. Bowden, Standard Solar Spectra for space and terrestrial use, PV eduacation.org.
    [7] R.N. Marks, J.J.M. Halls, D.D.C. Bradley, R.H. Friend, A.B. Holmes, The Photovoltaic Response in Poly(P-Phenylene Vinylene) Thin-Film Devices, J Phys-Condens Mat, 6 (1994) 1379-1394.
    [8] H. Spanggaard, F.C. Krebs, A brief history of the development of organic and polymeric photovoltaics, Sol Energ Mat Sol C, 83 (2004) 125-146.
    [9] H. Hoppe, N.S. Sariciftci, Organic solar cells: An overview, J Mater Res, 19 (2004) 1924-1945.
    [10] H. Hoppea, N.S. Sariciftci, J. Mater. Res, 19 (2004).
    [11] A.E. Becquerel, Compt. Rend. Acad. Sci., (1839).
    [12] W.G.D. Adams, R. E. , The Action of Light on Selenium, Proceedings of the Royal Society, London, (1876).
    [13] A. Pochettino, Acad. Lincei Rend., 15 (1906) 355.
    [14] M. Volmer, Ann. d. Physik., 40 (1913) 775.
    [15] R.H. Bube, Photoconductivity of Solids,, Wiley, New York, (1960).
    [16] S. Anthoe, Rom. Rep. Phys., 53 (2002) 427.
    [17] D.M. Chapin, Fuller, C. S.,Pearson G. I., J. Appl. Phyx., 25 (1954) 676.
    [18] M.A. Green, K. Emery, D.L. King, S. Igari, W. Warta, Solar cell efficiency tables (Version 22), Prog Photovoltaics, 11 (2003) 347-352.
    [19] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar Cell Efficiency Tables (Version 33), Prog Photovoltaics, 17 (2009) 85-94.
    [20] Konarka acquires siemens organic photovoltaic research activities, New York Times, (2004).
    [21] J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, 3 (2011) 4088-4093.
    [22] H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Gratzel, N.G. Park, Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, Sci Rep-Uk, 2 (2012).
    [23] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Science, 338 (2012) 643-647.
    [24] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499 (2013) 316-319.
    [25] M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501 (2013) 395-398.
    [26] N.G. Park, Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell, J Phys Chem Lett, 4 (2013) 2423-2429.
    [27] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells, Science, 345 (2014) 542-546.
    [28] M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy & Environmental Science, 9 (2016) 1989-1997.
    [29] S.D. Stranks, H.J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices, Nat Nanotechnol, 10 (2015) 391-402.
    [30] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells, Nano Lett, 13 (2013) 1764-1769.
    [31] G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy & Environmental Science, 7 (2014) 982-988.
    [32] S. De Wolf, J. Holovsky, S.J. Moon, P. Loper, B. Niesen, M. Ledinsky, F.J. Haug, J.H. Yum, C. Ballif, Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance, J Phys Chem Lett, 5 (2014) 1035-1039.
    [33] W.J. Yin, T.T. Shi, Y.F. Yan, Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance, Advanced Materials, 26 (2014) 4653-+.
    [34] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura, Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3CH3NH3PbI3, Solid State Commun, 127 (2003) 619-623.
    [35] V. D'Innocenzo, G. Grancini, M.J.P. Alcocer, A.R.S. Kandada, S.D. Stranks, M.M. Lee, G. Lanzani, H.J. Snaith, A. Petrozza, Excitons versus free charges in organo-lead tri-halide perovskites, Nat Commun, 5 (2014).
    [36] C.S. Ponseca, T.J. Savenije, M. Abdellah, K.B. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.P. Wolf, V. Sundstrom, Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination, Journal of the American Chemical Society, 136 (2014) 5189-5192.
    [37] G. Giorgi, J.I. Fujisawa, H. Segawa, K. Yamashita, Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis, J Phys Chem Lett, 4 (2013) 4213-4216.
    [38] S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science, 342 (2013) 341-344.
    [39] W.J. Yin, J.H. Yang, J. Kang, Y.F. Yan, S.H. Wei, Halide perovskite materials for solar cells: a theoretical review, Journal of Materials Chemistry A, 3 (2015) 8926-8942.
    [40] C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties, Inorg Chem, 52 (2013) 9019-9038.
    [41] T. Baikie, Y.N. Fang, J.M. Kadro, M. Schreyer, F.X. Wei, S.G. Mhaisalkar, M. Graetzel, T.J. White, Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications, Journal of Materials Chemistry A, 1 (2013) 5628-5641.
    [42] A. Walsh, Principles of Chemical Bonding and Band Gap Engineering in Hybrid Organic-Inorganic Halide Perovskites, J Phys Chem C, 119 (2015) 5755-5760.
    [43] S.H. Wei, A. Zunger, Electronic and structural anomalies in lead chalcogenides, Phys Rev B, 55 (1997) 13605-13610.
    [44] L. Lang, J.H. Yang, H.R. Liu, H.J. Xiang, X.G. Gong, First-principles study on the electronic and optical properties of cubic ABX(3) halide perovskites, Phys Lett A, 378 (2014) 290-293.
    [45] br life time.
    [46] B. Suarez, V. Gonzalez-Pedro, T.S. Ripolles, R.S. Sanchez, L. Otero, I. Mora-Sero, Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells, J Phys Chem Lett, 5 (2014) 1628-1635.
    [47] E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, D. Cahen, Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells, J Phys Chem Lett, 5 (2014) 429-433.
    [48] W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348 (2015) 1234-1237.
    [49] J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Low-temperature processed meso-superstructured to thin-film perovskite solar cells, Energy & Environmental Science, 6 (2013) 1739-1743.
    [50] Z.N. Song, S.C. Watthage, A.B. Phillips, M.J. Heben, Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications, J Photon Energy, 6 (2016).
    [51] G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells, Advanced Functional Materials, 24 (2014) 151-157.
    [52] T. Leijtens, B. Lauber, G.E. Eperon, S.D. Stranks, H.J. Snaith, The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells, J Phys Chem Lett, 5 (2014) 1096-1102.
    [53] T.M. Schmidt, T.T. Larsen-Olsen, J.E. Carlé, D. Angmo, F.C. Krebs, Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes, Advanced Energy Materials, 5 (2015) 1500569-n/a.
    [54] L. Etgar, P. Gao, Z.S. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Gratzel, Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells, Journal of the American Chemical Society, 134 (2012) 17396-17399.
    [55] N.K. Elumalai, M.A. Mahmud, D. Wang, A. Uddin, Perovskite Solar Cells: Progress and Advancements, Energies, 9 (2016).
    [56] C.-W. Chen, H.-W. Kang, S.-Y. Hsiao, P.-F. Yang, K.-M. Chiang, H.-W. Lin, Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition, Advanced Materials, 26 (2014) 6647-6652.
    [57] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process, Journal of the American Chemical Society, 136 (2014) 622-625.
    [58] Z.B. Yang, C.C. Chueh, F. Zuo, J.H. Kim, P.W. Liang, A.K.Y. Jen, High-Performance Fully Printable Perovskite Solar Cells via Blade-Coating Technique under the Ambient Condition, Advanced Energy Materials, 5 (2015).
    [59] J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, Y. Yang, Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility, ACS Nano, 8 (2014) 1674-1680.
    [60] R. Kang, J.-E. Kim, J.-S. Yeo, S. Lee, Y.-J. Jeon, D.-Y. Kim, Optimized Organometal Halide Perovskite Planar Hybrid Solar Cells via Control of Solvent Evaporation Rate, The Journal of Physical Chemistry C, 118 (2014) 26513-26520.
    [61] J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, Y. Yang, Moisture assisted perovskite film growth for high performance solar cells, Applied Physics Letters, 105 (2014) 183902.
    [62] B. Conings, L. Baeten, C. De Dobbelaere, J. D'Haen, J. Manca, H.-G. Boyen, Perovskite-Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach, Advanced Materials, 26 (2014) 2041-2046.
    [63] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement, Advanced Materials, 26 (2014) 6503-6509.
    [64] C.-H. Chiang, Z.-L. Tseng, C.-G. Wu, Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process, Journal of Materials Chemistry A, 2 (2014) 15897-15903.
    [65] J.H. Im, H.S. Kim, N.G. Park, Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3, Apl Mater, 2 (2014).
    [66] Z.G. Xiao, C. Bi, Y.C. Shao, Q.F. Dong, Q. Wang, Y.B. Yuan, C.G. Wang, Y.L. Gao, J.S. Huang, Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers, Energy & Environmental Science, 7 (2014) 2619-2623.
    [67] Y. Xu, L. Zhu, J. Shi, S. Lv, X. Xu, J. Xiao, J. Dong, H. Wu, Y. Luo, D. Li, Q. Meng, Efficient Hybrid Mesoscopic Solar Cells with Morphology-Controlled CH3NH3PbI3-xClx Derived from Two-Step Spin Coating Method, ACS Applied Materials & Interfaces, 7 (2015) 2242-2248.
    [68] S. Dharani, H.A. Dewi, R.R. Prabhakar, T. Baikie, C. Shi, D. Yonghua, N. Mathews, P.P. Boix, S.G. Mhaisalkar, Incorporation of Cl into sequentially deposited lead halide perovskite films for highly efficient mesoporous solar cells, Nanoscale, 6 (2014) 13854-13860.
    [69] R. Long, J. Liu, O.V. Prezhdo, Unravelling the Effects of Grain Boundary and Chemical Doping on Electron-Hole Recombination in CH3NH3PbI3 Perovskite by Time-Domain Atomistic Simulation, Journal of the American Chemical Society, 138 (2016) 3884-3890.
    [70] J. Seo, S. Park, Y. Chan Kim, N.J. Jeon, J.H. Noh, S.C. Yoon, S.I. Seok, Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells, Energy & Environmental Science, 7 (2014) 2642-2646.
    [71] Y.-C. Chern, H.-R. Wu, Y.-C. Chen, H.-W. Zan, H.-F. Meng, S.-F. Horng, Reliable solution processed planar perovskite hybrid solar cells with large-area uniformity by chloroform soaking and spin rinsing induced surface precipitation, AIP Advances, 5 (2015) 087125.
    [72] S.T. Williams, F. Zuo, C.-C. Chueh, C.-Y. Liao, P.-W. Liang, A.K.Y. Jen, Role of Chloride in the Morphological Evolution of Organo-Lead Halide Perovskite Thin Films, ACS Nano, 8 (2014) 10640-10654.
    [73] T. Ma, M. Cagnoni, D. Tadaki, A. Hirano-Iwata, M. Niwano, Annealing-induced chemical and structural changes in tri-iodide and mixed-halide organometal perovskite layers, Journal of Materials Chemistry A, 3 (2015) 14195-14201.
    [74] B.-w. Park, B. Philippe, T. Gustafsson, K. Sveinbjörnsson, A. Hagfeldt, E.M.J. Johansson, G. Boschloo, Enhanced Crystallinity in Organic–Inorganic Lead Halide Perovskites on Mesoporous TiO2 via Disorder–Order Phase Transition, Chemistry of Materials, 26 (2014) 4466-4471.
    [75] S.A. Bretschneider, J. Weickert, J.A. Dorman, L. Schmidt-Mende, Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications, APL Mater., 2 (2014) 040701.
    [76] K.T. Butler, J.M. Frost, A. Walsh, Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3, Materials Horizons, 2 (2015) 228-231.
    [77] G. Maculan, A.D. Sheikh, A.L. Abdelhady, M.I. Saidaminov, M.A. Haque, B. Murali, E. Alarousu, O.F. Mohammed, T. Wu, O.M. Bakr, CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector, The Journal of Physical Chemistry Letters, 6 (2015) 3781-3786.
    [78] N. Kitazawa, Y. Watanabe, Y. Nakamura, Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals, Journal of Materials Science, 37 (2002) 3585-3587.
    [79] T. Baikie, N.S. Barrow, Y.A. Fang, P.J. Keenan, P.R. Slater, R.O. Piltz, M. Gutmann, S.G. Mhaisalkar, T.J. White, A combined single crystal neutron/X-ray diffraction and solid-state nuclear magnetic resonance study of the hybrid perovskites CH3NH3PbX3 (X = I, Br and Cl), Journal of Materials Chemistry A, 3 (2015) 9298-9307.
    [80] K.M. Boopathi, M. Ramesh, P. Perumal, Y.-C. Huang, C.-S. Tsao, Y.-F. Chen, C.-H. Lee, C.-W. Chu, Preparation of metal halide perovskite solar cells through a liquid droplet assisted method, Journal of Materials Chemistry A, 3 (2015) 9257-9263.
    [81] H. Zhang, C. Liang, Y. Zhao, M. Sun, H. Liu, J. Liang, D. Li, F. Zhang, Z. He, Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells, Physical Chemistry Chemical Physics, 17 (2015) 9613-9618.
    [82] N. Tripathi, M. Yanagida, Y. Shirai, T. Masuda, L. Han, K. Miyano, Hysteresis-free and highly stable perovskite solar cells produced via a chlorine-mediated interdiffusion method, Journal of Materials Chemistry A, 3 (2015) 12081-12088.
    [83] E.L. Unger, A.R. Bowring, C.J. Tassone, V.L. Pool, A. Gold-Parker, R. Cheacharoen, K.H. Stone, E.T. Hoke, M.F. Toney, M.D. McGehee, Chloride in Lead Chloride-Derived Organo-Metal Halides for Perovskite-Absorber Solar Cells, Chemistry of Materials, 26 (2014) 7158-7165.
    [84] J.S. Yun, A. Ho-Baillie, S. Huang, S.H. Woo, Y. Heo, J. Seidel, F. Huang, Y.-B. Cheng, M.A. Green, Benefit of Grain Boundaries in Organic–Inorganic Halide Planar Perovskite Solar Cells, The Journal of Physical Chemistry Letters, 6 (2015) 875-880.
    [85] W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, A.D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science, 347 (2015) 522-525.
    [86] F.X. Xie, D. Zhang, H. Su, X. Ren, K.S. Wong, M. Grätzel, W.C.H. Choy, Vacuum-Assisted Thermal Annealing of CH3NH3PbI3 for Highly Stable and Efficient Perovskite Solar Cells, ACS Nano, 9 (2015) 639-646.
    [87] N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nat Mater, 13 (2014) 897-903.
    [88] J.W. Jung, S.T. Williams, A.K.Y. Jen, Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments, RSC Advances, 4 (2014) 62971-62977.
    [89] C.-C. Chen, S.-H. Bae, W.-H. Chang, Z. Hong, G. Li, Q. Chen, H. Zhou, Y. Yang, Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process, Materials Horizons, 2 (2015) 203-211.
    [90] P.A.M. Boomkamp, R.H.M. Miesen, Classification of instabilities in parallel two-phase flow, International Journal of Multiphase Flow, 22 (1996) 67-88.
    [91] L. Daniels, Dealing with 2-Phase Flows, Chem Eng-New York, 102 (1995) 70.
    [92] T.-B. Song, Q. Chen, H. Zhou, S. Luo, Y. Yang, J. You, Y. Yang, Unraveling film transformations and device performance of planar perovskite solar cells, Nano Energy, 12 (2015) 494-500.
    [93] C.R. Wilke, P. Chang, Correlation of diffusion coefficients in dilute solutions, AIChE Journal, 1 (1955) 264-270.
    [94] C.Y. Chen, H.W. Chang, Y.F. Chang, B.J. Chang, Y.S. Lin, P.S. Jian, H.C. Yeh, H.T. Chien, E.C. Chen, Y.C. Chao, H.F. Meng, H.W. Zan, H.W. Lin, S.F. Horng, Y.J. Cheng, F.W. Yen, I.F. Lin, H.Y. Yang, K.J. Huang, M.R. Tseng, Continuous blade coating for multi-layer large-area organic light-emitting diode and solar cell, J Appl Phys, 110 (2011).
    [95] H.C. Yeh, H.F. Meng, H.W. Lin, T.C. Chao, M.R. Tseng, H.W. Zan, All-small-molecule efficient white organic light-emitting diodes by multi-layer blade coating, Organic Electronics, 13 (2012) 914-918.
    [96] S. Razza, F. Di Giacomo, F. Matteocci, L. Cina, A.L. Palma, S. Casaluci, P. Cameron, A. D'Epifanio, S. Licoccia, A. Reale, T.M. Brown, A. Di Carlo, Perovskite solar cells and large area modules (100 cm(2)) based on an air flow-assisted PbI2 blade coating deposition process, J Power Sources, 277 (2015) 286-291.

    無法下載圖示 全文公開日期 2022/07/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE