研究生: |
陳彥呈 Chern, Yann-Cherng |
---|---|
論文名稱: |
鉛鹵鈣鈦礦太陽電池薄膜成長與大面積製程技術研究 Studies in growth mechanism and large area processing of lead-halide perovskite solar cell |
指導教授: |
洪勝富
Horng, Sheng-Fu |
口試委員: |
孟心飛
Meng, Hsin-Fei 冉曉雯 Zan, Hsiao-Wen 陳方中 Chen, Fang-Chung 趙宇強 Chao, Yu-Chiang |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 138 |
中文關鍵詞: | 鈣鈦礦太陽電池 、大面積薄膜製程 、溶液浸潤旋塗法 、PIN結構 、刮刀製程 |
外文關鍵詞: | Perovskite solar cells, large scale thin film fabrication, solvent rinsing-spinning technique, PIN structure, blade coating fabrication |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
鈣鈦礦太陽能電池在2009~2016年間效率提升至22.1%達五倍之多,特別是PIN平面結構被認為具備低溫製程可商業化大面積製程的潛力,因此本研究以PIN平面結構之鈣鈦礦太陽電池的薄膜製程與大面積研究為主。
PIN平面太陽電池以PEDOT:PSS為電洞傳輸層(HTL),CH3NH3PbI3為主動層,PCBM為電子傳輸層(ETL),本研究利用CH3NH3PbI(3-x)Clx作為介面層於電洞傳輸層與主動層之間,CH3NH3PbI(3-x)Clx的抗水性可做為水相的PEDOT:PSS和鈣鈦礦的緩衝層,同時改善二步法溶液製程的PbI2薄膜均勻度,進而形成columnar的CH3NH3PbI3結晶結構,使得短路電流提升超過50%,也證實為載子傳輸效率提升所致。
大面積太陽電池因以數個電池串接而成,往往受最低短路電流的元件所拖累,因此主動層的均勻度至關重要。本研究以chloroform soaking and spin rinsing induced surface precipitation方法,在主動層表面形成微晶析出,並透過spin rinsing控制膜厚,退火後形成更加均勻且緻密的主動層,最終在3 * 3 cm2 上驗證4 cell array達到10.6%±0.2% 光轉換效率(PCE),此方法相較傳統dripping method,減緩droplet影響且更適合大面積薄膜製程。CF相比toluene有較低molar volume和較低黏滯性,更快與DMSO:DMF precursor solvent互溶,最終實現8 * 8 cm2 均勻鈣鈦礦主動層薄膜。
Roll to Roll (R2R) compatible solution process被視為大面積鈣鈦礦太陽電池的重要技術,因此本研究以全刮刀二步法溶液製程,製作PIN鈣鈦礦太陽電池,並以HFAM技術改善PbI2表面粗糙度由23.6nm降至2.78nm,提升主動層均勻度與短路電流一致性,而且主動層退火溫度≤100°C,搭配HFAM均可搭配R2R應用,作為大面積製程之製造技術。
關鍵字:鈣鈦礦太陽電池、大面積薄膜製程、溶液浸潤旋塗法、PIN結構、刮刀製程
Abstract
The efficiency of perovskite solar cells had been increased fivefold between 2009 and 2016. In particular, PIN planar structure has been recognized as having great potential for low temperature fabrication and large scale commercial production. Therefore, this study will focus on the investigation of fabrication of perovskite solar cell with PIN planar structure as well as large scale production.
PIN planar solar cells use PEDOT:PSS as the hole transport layer(HTL), CH3NH3PbI3 as the active layer, and PCBM as the electron transport layer(ETL). In order to improve carrier transport efficiency and crystalline characteristics of the active layer, CH3NH3PbI(3-x)Clx is used in the study as the interface layer between the HTL and the active layer. The hydrophobicity of CH3NH3PbI(3-x)Clx can be used as a buffer layer for the hydrophilic PEDOT:PSS and perovskite. At the same time, it increases the uniformity of PbI2 film in the two-step solution process, forming a columnar CH3NH3PbI3 crystalline structure which enhances the short circuit current to over 50%. This phenomenon had been demonstrated to be caused by the improvement of carrier transport efficiency.
Furthermore, due to the module are in series formation, and this is often negatively influenced by the worst short circuit current cell. Thus, it is paramount to ensure the uniformity of the active layer of large area solar cells. The present study investigates chloroform soaking and spin rinsing induced surface precipitation method. First, a micro-lattice deposition on the active layer occurs, followed by spin rising to control film thickness. Second, annealing is used to produce an even more uniform and compact active layer. This method results in a 4-cell array with a 10.6%±0.2% photo-conversion efficiency (PCE) on an area of 3*3 cm2. In contrast to the conventional dripping method, reducing droplet affects and is more suitable for large area thin film fabrication. Furthermore, comparing the use of toluene and chloroform as the solvent for the soaking method, the former fails to form uniform film on the 3 *3 cm2 active layer, whereas chloroform can dissolve in the DMSO:DMF precursor solvent faster due to its lower molar volume and viscosity, resulting in an uniform perovskite active layer film area of 8*8 cm2 successfully.
Currently, roll-to-roll (R2R) compatible solution process is viewed as an important technique for large area perovskite solar cell fabrication. Thus, this present study investigates a blade only coating two-step solution process for fabricating PIN perovskite solar cells, and the study further improves the surface granularity of PbI2 to 2.78nm from 23.6nm using HFAM technique and increases active layer uniformity and short circuit current consistency. Additionally, the annealing temperature of the active layer is ≤100°C, which is compatible with R2R applications using HFAM for large scale manufacturing.
Keywords: Perovskite solar cells, large scale thin film fabrication, solvent rinsing-spinning technique, PIN structure, blade coating fabrication
Reference
[1] INTERNATIONAL ENERGY OUTLOOK 2016, (2016).
[2] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J Am Chem Soc, 131 (2009) 6050-6051.
[3] NREL, BestResearch-Cell Efficiencies, 2016.
[4] R.A. Rohde, Solar Radiation Spectrum, Global Warming Art project.
[5] M.A. Green, Solar cells: operating principle, tecknology, and system applications, Prentice-Hall, (1982).
[6] C. Honsberg, S. Bowden, Standard Solar Spectra for space and terrestrial use, PV eduacation.org.
[7] R.N. Marks, J.J.M. Halls, D.D.C. Bradley, R.H. Friend, A.B. Holmes, The Photovoltaic Response in Poly(P-Phenylene Vinylene) Thin-Film Devices, J Phys-Condens Mat, 6 (1994) 1379-1394.
[8] H. Spanggaard, F.C. Krebs, A brief history of the development of organic and polymeric photovoltaics, Sol Energ Mat Sol C, 83 (2004) 125-146.
[9] H. Hoppe, N.S. Sariciftci, Organic solar cells: An overview, J Mater Res, 19 (2004) 1924-1945.
[10] H. Hoppea, N.S. Sariciftci, J. Mater. Res, 19 (2004).
[11] A.E. Becquerel, Compt. Rend. Acad. Sci., (1839).
[12] W.G.D. Adams, R. E. , The Action of Light on Selenium, Proceedings of the Royal Society, London, (1876).
[13] A. Pochettino, Acad. Lincei Rend., 15 (1906) 355.
[14] M. Volmer, Ann. d. Physik., 40 (1913) 775.
[15] R.H. Bube, Photoconductivity of Solids,, Wiley, New York, (1960).
[16] S. Anthoe, Rom. Rep. Phys., 53 (2002) 427.
[17] D.M. Chapin, Fuller, C. S.,Pearson G. I., J. Appl. Phyx., 25 (1954) 676.
[18] M.A. Green, K. Emery, D.L. King, S. Igari, W. Warta, Solar cell efficiency tables (Version 22), Prog Photovoltaics, 11 (2003) 347-352.
[19] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar Cell Efficiency Tables (Version 33), Prog Photovoltaics, 17 (2009) 85-94.
[20] Konarka acquires siemens organic photovoltaic research activities, New York Times, (2004).
[21] J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, 3 (2011) 4088-4093.
[22] H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Gratzel, N.G. Park, Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, Sci Rep-Uk, 2 (2012).
[23] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Science, 338 (2012) 643-647.
[24] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499 (2013) 316-319.
[25] M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501 (2013) 395-398.
[26] N.G. Park, Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell, J Phys Chem Lett, 4 (2013) 2423-2429.
[27] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells, Science, 345 (2014) 542-546.
[28] M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy & Environmental Science, 9 (2016) 1989-1997.
[29] S.D. Stranks, H.J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices, Nat Nanotechnol, 10 (2015) 391-402.
[30] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells, Nano Lett, 13 (2013) 1764-1769.
[31] G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy & Environmental Science, 7 (2014) 982-988.
[32] S. De Wolf, J. Holovsky, S.J. Moon, P. Loper, B. Niesen, M. Ledinsky, F.J. Haug, J.H. Yum, C. Ballif, Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance, J Phys Chem Lett, 5 (2014) 1035-1039.
[33] W.J. Yin, T.T. Shi, Y.F. Yan, Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance, Advanced Materials, 26 (2014) 4653-+.
[34] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura, Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3CH3NH3PbI3, Solid State Commun, 127 (2003) 619-623.
[35] V. D'Innocenzo, G. Grancini, M.J.P. Alcocer, A.R.S. Kandada, S.D. Stranks, M.M. Lee, G. Lanzani, H.J. Snaith, A. Petrozza, Excitons versus free charges in organo-lead tri-halide perovskites, Nat Commun, 5 (2014).
[36] C.S. Ponseca, T.J. Savenije, M. Abdellah, K.B. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.P. Wolf, V. Sundstrom, Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination, Journal of the American Chemical Society, 136 (2014) 5189-5192.
[37] G. Giorgi, J.I. Fujisawa, H. Segawa, K. Yamashita, Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis, J Phys Chem Lett, 4 (2013) 4213-4216.
[38] S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science, 342 (2013) 341-344.
[39] W.J. Yin, J.H. Yang, J. Kang, Y.F. Yan, S.H. Wei, Halide perovskite materials for solar cells: a theoretical review, Journal of Materials Chemistry A, 3 (2015) 8926-8942.
[40] C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties, Inorg Chem, 52 (2013) 9019-9038.
[41] T. Baikie, Y.N. Fang, J.M. Kadro, M. Schreyer, F.X. Wei, S.G. Mhaisalkar, M. Graetzel, T.J. White, Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications, Journal of Materials Chemistry A, 1 (2013) 5628-5641.
[42] A. Walsh, Principles of Chemical Bonding and Band Gap Engineering in Hybrid Organic-Inorganic Halide Perovskites, J Phys Chem C, 119 (2015) 5755-5760.
[43] S.H. Wei, A. Zunger, Electronic and structural anomalies in lead chalcogenides, Phys Rev B, 55 (1997) 13605-13610.
[44] L. Lang, J.H. Yang, H.R. Liu, H.J. Xiang, X.G. Gong, First-principles study on the electronic and optical properties of cubic ABX(3) halide perovskites, Phys Lett A, 378 (2014) 290-293.
[45] br life time.
[46] B. Suarez, V. Gonzalez-Pedro, T.S. Ripolles, R.S. Sanchez, L. Otero, I. Mora-Sero, Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells, J Phys Chem Lett, 5 (2014) 1628-1635.
[47] E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, D. Cahen, Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells, J Phys Chem Lett, 5 (2014) 429-433.
[48] W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348 (2015) 1234-1237.
[49] J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Low-temperature processed meso-superstructured to thin-film perovskite solar cells, Energy & Environmental Science, 6 (2013) 1739-1743.
[50] Z.N. Song, S.C. Watthage, A.B. Phillips, M.J. Heben, Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications, J Photon Energy, 6 (2016).
[51] G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells, Advanced Functional Materials, 24 (2014) 151-157.
[52] T. Leijtens, B. Lauber, G.E. Eperon, S.D. Stranks, H.J. Snaith, The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells, J Phys Chem Lett, 5 (2014) 1096-1102.
[53] T.M. Schmidt, T.T. Larsen-Olsen, J.E. Carlé, D. Angmo, F.C. Krebs, Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes, Advanced Energy Materials, 5 (2015) 1500569-n/a.
[54] L. Etgar, P. Gao, Z.S. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Gratzel, Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells, Journal of the American Chemical Society, 134 (2012) 17396-17399.
[55] N.K. Elumalai, M.A. Mahmud, D. Wang, A. Uddin, Perovskite Solar Cells: Progress and Advancements, Energies, 9 (2016).
[56] C.-W. Chen, H.-W. Kang, S.-Y. Hsiao, P.-F. Yang, K.-M. Chiang, H.-W. Lin, Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition, Advanced Materials, 26 (2014) 6647-6652.
[57] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process, Journal of the American Chemical Society, 136 (2014) 622-625.
[58] Z.B. Yang, C.C. Chueh, F. Zuo, J.H. Kim, P.W. Liang, A.K.Y. Jen, High-Performance Fully Printable Perovskite Solar Cells via Blade-Coating Technique under the Ambient Condition, Advanced Energy Materials, 5 (2015).
[59] J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, Y. Yang, Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility, ACS Nano, 8 (2014) 1674-1680.
[60] R. Kang, J.-E. Kim, J.-S. Yeo, S. Lee, Y.-J. Jeon, D.-Y. Kim, Optimized Organometal Halide Perovskite Planar Hybrid Solar Cells via Control of Solvent Evaporation Rate, The Journal of Physical Chemistry C, 118 (2014) 26513-26520.
[61] J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, Y. Yang, Moisture assisted perovskite film growth for high performance solar cells, Applied Physics Letters, 105 (2014) 183902.
[62] B. Conings, L. Baeten, C. De Dobbelaere, J. D'Haen, J. Manca, H.-G. Boyen, Perovskite-Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach, Advanced Materials, 26 (2014) 2041-2046.
[63] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement, Advanced Materials, 26 (2014) 6503-6509.
[64] C.-H. Chiang, Z.-L. Tseng, C.-G. Wu, Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process, Journal of Materials Chemistry A, 2 (2014) 15897-15903.
[65] J.H. Im, H.S. Kim, N.G. Park, Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3, Apl Mater, 2 (2014).
[66] Z.G. Xiao, C. Bi, Y.C. Shao, Q.F. Dong, Q. Wang, Y.B. Yuan, C.G. Wang, Y.L. Gao, J.S. Huang, Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers, Energy & Environmental Science, 7 (2014) 2619-2623.
[67] Y. Xu, L. Zhu, J. Shi, S. Lv, X. Xu, J. Xiao, J. Dong, H. Wu, Y. Luo, D. Li, Q. Meng, Efficient Hybrid Mesoscopic Solar Cells with Morphology-Controlled CH3NH3PbI3-xClx Derived from Two-Step Spin Coating Method, ACS Applied Materials & Interfaces, 7 (2015) 2242-2248.
[68] S. Dharani, H.A. Dewi, R.R. Prabhakar, T. Baikie, C. Shi, D. Yonghua, N. Mathews, P.P. Boix, S.G. Mhaisalkar, Incorporation of Cl into sequentially deposited lead halide perovskite films for highly efficient mesoporous solar cells, Nanoscale, 6 (2014) 13854-13860.
[69] R. Long, J. Liu, O.V. Prezhdo, Unravelling the Effects of Grain Boundary and Chemical Doping on Electron-Hole Recombination in CH3NH3PbI3 Perovskite by Time-Domain Atomistic Simulation, Journal of the American Chemical Society, 138 (2016) 3884-3890.
[70] J. Seo, S. Park, Y. Chan Kim, N.J. Jeon, J.H. Noh, S.C. Yoon, S.I. Seok, Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells, Energy & Environmental Science, 7 (2014) 2642-2646.
[71] Y.-C. Chern, H.-R. Wu, Y.-C. Chen, H.-W. Zan, H.-F. Meng, S.-F. Horng, Reliable solution processed planar perovskite hybrid solar cells with large-area uniformity by chloroform soaking and spin rinsing induced surface precipitation, AIP Advances, 5 (2015) 087125.
[72] S.T. Williams, F. Zuo, C.-C. Chueh, C.-Y. Liao, P.-W. Liang, A.K.Y. Jen, Role of Chloride in the Morphological Evolution of Organo-Lead Halide Perovskite Thin Films, ACS Nano, 8 (2014) 10640-10654.
[73] T. Ma, M. Cagnoni, D. Tadaki, A. Hirano-Iwata, M. Niwano, Annealing-induced chemical and structural changes in tri-iodide and mixed-halide organometal perovskite layers, Journal of Materials Chemistry A, 3 (2015) 14195-14201.
[74] B.-w. Park, B. Philippe, T. Gustafsson, K. Sveinbjörnsson, A. Hagfeldt, E.M.J. Johansson, G. Boschloo, Enhanced Crystallinity in Organic–Inorganic Lead Halide Perovskites on Mesoporous TiO2 via Disorder–Order Phase Transition, Chemistry of Materials, 26 (2014) 4466-4471.
[75] S.A. Bretschneider, J. Weickert, J.A. Dorman, L. Schmidt-Mende, Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications, APL Mater., 2 (2014) 040701.
[76] K.T. Butler, J.M. Frost, A. Walsh, Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3, Materials Horizons, 2 (2015) 228-231.
[77] G. Maculan, A.D. Sheikh, A.L. Abdelhady, M.I. Saidaminov, M.A. Haque, B. Murali, E. Alarousu, O.F. Mohammed, T. Wu, O.M. Bakr, CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector, The Journal of Physical Chemistry Letters, 6 (2015) 3781-3786.
[78] N. Kitazawa, Y. Watanabe, Y. Nakamura, Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals, Journal of Materials Science, 37 (2002) 3585-3587.
[79] T. Baikie, N.S. Barrow, Y.A. Fang, P.J. Keenan, P.R. Slater, R.O. Piltz, M. Gutmann, S.G. Mhaisalkar, T.J. White, A combined single crystal neutron/X-ray diffraction and solid-state nuclear magnetic resonance study of the hybrid perovskites CH3NH3PbX3 (X = I, Br and Cl), Journal of Materials Chemistry A, 3 (2015) 9298-9307.
[80] K.M. Boopathi, M. Ramesh, P. Perumal, Y.-C. Huang, C.-S. Tsao, Y.-F. Chen, C.-H. Lee, C.-W. Chu, Preparation of metal halide perovskite solar cells through a liquid droplet assisted method, Journal of Materials Chemistry A, 3 (2015) 9257-9263.
[81] H. Zhang, C. Liang, Y. Zhao, M. Sun, H. Liu, J. Liang, D. Li, F. Zhang, Z. He, Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells, Physical Chemistry Chemical Physics, 17 (2015) 9613-9618.
[82] N. Tripathi, M. Yanagida, Y. Shirai, T. Masuda, L. Han, K. Miyano, Hysteresis-free and highly stable perovskite solar cells produced via a chlorine-mediated interdiffusion method, Journal of Materials Chemistry A, 3 (2015) 12081-12088.
[83] E.L. Unger, A.R. Bowring, C.J. Tassone, V.L. Pool, A. Gold-Parker, R. Cheacharoen, K.H. Stone, E.T. Hoke, M.F. Toney, M.D. McGehee, Chloride in Lead Chloride-Derived Organo-Metal Halides for Perovskite-Absorber Solar Cells, Chemistry of Materials, 26 (2014) 7158-7165.
[84] J.S. Yun, A. Ho-Baillie, S. Huang, S.H. Woo, Y. Heo, J. Seidel, F. Huang, Y.-B. Cheng, M.A. Green, Benefit of Grain Boundaries in Organic–Inorganic Halide Planar Perovskite Solar Cells, The Journal of Physical Chemistry Letters, 6 (2015) 875-880.
[85] W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, A.D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science, 347 (2015) 522-525.
[86] F.X. Xie, D. Zhang, H. Su, X. Ren, K.S. Wong, M. Grätzel, W.C.H. Choy, Vacuum-Assisted Thermal Annealing of CH3NH3PbI3 for Highly Stable and Efficient Perovskite Solar Cells, ACS Nano, 9 (2015) 639-646.
[87] N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nat Mater, 13 (2014) 897-903.
[88] J.W. Jung, S.T. Williams, A.K.Y. Jen, Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments, RSC Advances, 4 (2014) 62971-62977.
[89] C.-C. Chen, S.-H. Bae, W.-H. Chang, Z. Hong, G. Li, Q. Chen, H. Zhou, Y. Yang, Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process, Materials Horizons, 2 (2015) 203-211.
[90] P.A.M. Boomkamp, R.H.M. Miesen, Classification of instabilities in parallel two-phase flow, International Journal of Multiphase Flow, 22 (1996) 67-88.
[91] L. Daniels, Dealing with 2-Phase Flows, Chem Eng-New York, 102 (1995) 70.
[92] T.-B. Song, Q. Chen, H. Zhou, S. Luo, Y. Yang, J. You, Y. Yang, Unraveling film transformations and device performance of planar perovskite solar cells, Nano Energy, 12 (2015) 494-500.
[93] C.R. Wilke, P. Chang, Correlation of diffusion coefficients in dilute solutions, AIChE Journal, 1 (1955) 264-270.
[94] C.Y. Chen, H.W. Chang, Y.F. Chang, B.J. Chang, Y.S. Lin, P.S. Jian, H.C. Yeh, H.T. Chien, E.C. Chen, Y.C. Chao, H.F. Meng, H.W. Zan, H.W. Lin, S.F. Horng, Y.J. Cheng, F.W. Yen, I.F. Lin, H.Y. Yang, K.J. Huang, M.R. Tseng, Continuous blade coating for multi-layer large-area organic light-emitting diode and solar cell, J Appl Phys, 110 (2011).
[95] H.C. Yeh, H.F. Meng, H.W. Lin, T.C. Chao, M.R. Tseng, H.W. Zan, All-small-molecule efficient white organic light-emitting diodes by multi-layer blade coating, Organic Electronics, 13 (2012) 914-918.
[96] S. Razza, F. Di Giacomo, F. Matteocci, L. Cina, A.L. Palma, S. Casaluci, P. Cameron, A. D'Epifanio, S. Licoccia, A. Reale, T.M. Brown, A. Di Carlo, Perovskite solar cells and large area modules (100 cm(2)) based on an air flow-assisted PbI2 blade coating deposition process, J Power Sources, 277 (2015) 286-291.