簡易檢索 / 詳目顯示

研究生: 劉邦治
Pang-Chih Liu
論文名稱: 整合介電泳細胞操控與交流電動式微幫浦之實驗室晶片應用於單細胞電穿透實驗
A Single Cell Electroporation Lab Chip via the Integration of Dielectrophoresis Manipulation and AC Electrokinetic Pump
指導教授: 劉承賢
Cheng-Hsien Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 56
中文關鍵詞: 介電泳交流電動式微幫浦單細胞操控
外文關鍵詞: Dielectrophoresis, AC Electrokinetic Pump, Single Cell Manipulation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文研究中,我們設計一利用介電泳力 (Dielectrophoresis, DEP) 達到細胞操控並且整合交流電動式微幫浦 (AC electrokinetic pump) 之微生醫實驗室晶片,提供單一細胞電穿透 (Electroporation)的生醫應用。藉由施加不同頻率的電壓至設計的微電極上,對細胞產生正、負介電泳力,並且利用漸縮的微流道結構,達到單一細胞操控的功能,進而實現操控單細胞的電穿透功能。以交流電動式微幫浦傳送DNA或是染劑至On-Chip的電穿透實驗區域,給予交錯城堡狀電極數個脈波的電壓訊號,使得已被操控至定位的細胞其細胞膜產生暫時性的微通透孔隙,便能夠將DNA或是染劑送入細胞中,觀察其生物反應,此一技術將可提供生醫醫藥研發及癌症 (drug screening and cancer study)方面的研究應用。其研究原理,晶片設計,CFD軟體模擬與成功的實驗結果在本論文中有詳細的探討與實現。
    實驗部分包含在晶片上以正、負介電泳力對細胞的操控、交流電動式微幫浦的整合並操作在特定介電泳溶液中以及單細胞的產生機制與最後電穿透生物實驗的結果都成功的實現並且整合至我們設計的生物晶片上。這份研究成功的介紹一創新的介電泳單一細胞操控機制並且整合交流電動式微幫浦應用在單細胞電穿透實驗,對於系統生物晶片的研究上提供一個創新的整合概念與應用平台。


    In this research, we report the development and experimental results of a single cell electroporation lab chip via the integration of dielectrophoresis manipulation and AC electrokinetic pump. Both dielectrophoresis force and AC electrokinetics pump are incorporated in this micro-chip for the target of single cell electroporation. By applying individual input AC voltage with different frequency on different micro electrodes, cells could be manipulated in our device based on their electric property. An additional micro-structure filter design is adopted in this chip to function as a single cell micro-channel for the purpose of centralizing the cells in a line. DNA or other nano-injectors could be pumped to the electroporation region and be inserted into the target cell via the castellated electrodes with several short electrical pulses.
    The theory, chip design and simulation are reported in this thesis. The experiments including positive and negative DEP force for live cells manipulation, AC electrokinetic pump in DEP buffer, single-cell sorting mechanism, single cell electroporation and the integration of system chip functions have be demonstrated successfully. This research has demonstrated the pioneer of single-cell DEP manipulation and the integration of AC electrokinetic pump for system bio-chip research like electroporation, which could be applied to the applications of drug screening and cancer study.

    1. Introduction - 1 - 1.1 Background and Motivation - 1 - 1.2 Literature Survey - 3 - 1.2.1 AC Electrokinetic Fluid Pumping - 3 - 1.2.2 The Manipulationof Micro Objects - 6 - 1.2.3 Cell Electroporation - 9 - 2. Device Development - 14 - 2.1 Dielectrophoresis ….- 14 - 2.2 Lab-chip Design and Functions - 19 - 2.3 Theoretical Analyses and Numerical Simulation - 21 - 2.3.1 The Analysis of AC Electrokinetic Pumping Efficiency - 21 - 2.3.2 The Synthesis of Single Cell Shooting - 25 - 3. Micro Machining Process - 31 - 3.1 Process Flow - 31 - 3.2 Micro Fabrication Results -33 - 4. Bio-experimental Demonstration and Results - 36 - 4.1 Experimental System Setup - 36 - 4.2 Preliminary Testing and Device Characterization - 38 - 4.2.1 DEP Electric Proporty of MDCK Live Cells - 38 - 4.2.2 AC Electrokinetic Pumping in DEP Buffer - 39 - 4.2.3 Cell Electroporation with YOYO1 Fluorescent Probes - 43 - 4.3 Bio-Experimental Demonstration and Results - 44 - 5. Conclusion - 52 - 5.1 Summary - 52 - 5.2 Future Work - 53 - Acknowledgement - 54 - References - 55 -

    [1] Pak Kin Wong, Tza-Huei Wang, Joanne H. Deval, and Chih-Ming Ho, “Electrokinetics in Micro Devices for Biotechnology Applications,” IEEE/ASME Transactions on Mechatronics, Vol.9, NO. 2, JUNE 2004.
    [2] M. Sitti, “Survey of Nanomanipulation Systems,” Proc. of the IEEE-Nanotechnology Conference, pp.75-80, 2001
    [3] G.M. Whitesides, A.D. Stroock, “Flexible methods for microfluidics,” Phys. Today 54 (6) 42–48, 2001.
    [4] A. B. D. Brown, C. G. Smith, and A. R. Rennie, “Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes,” PHYSICAL REVIEW E, Vol 63, 016305, 2000.
    [5] M. Mpholoa, C.G. Smith, A.B.D. Brownb, “Low voltage plug flow pumping using anisotropic electrode arrays,” Sensors and Actuators B 92 262–268, 2003.
    [6] V. Studer, A. Pepin, Y. Chen, A. Ajdari, “Fabrication of microfluidic devices for AC electrokinetic fluid pumping,” Microelectronic Engineering 61–62 915–920, 2002.
    [7] A. Ashkin and J. M. Dziedzic, “Optical Trapping and Manipulation of Virus and Bacteria,” Science, vol 235, pp. 1517-1520, March 1987.
    [8] A. Ashkin, “Optical trapping and manipulation of neutralparticles using lasers,” Proc Nat Acad Sci USA 94:4853–60, 1997.
    [9] A. Ashkin, “History of Optical Trapping and Manipulation of
    Small-Neutral Particle, Atoms, and Molecules,” IEEE Journal on selected topics in quantum electronics, vol.6, November/December 2000.
    [10] C. J. Kim, A. P. Pisano, R. S. uller, “Silicon-Processed Overhanging Microgripper,” J. MEMS, vol.1, no.3, pp.31-36, March 1992.
    [11] Nikolas Chronis and Luke P. Lee, “Polymer MEMS-based Microgripper for single cell manipulation.”
    [12] G.H. Markx, Y. Huang, X-F Zhou, R. Pethig, “Dielectrophoretic characterization and separation of micro-organisms,” Microbiology, 140, pp.585-591, 1994.
    [13] T. Muller, G. Gradl, S. Howitz, S. Shirley, Th. Schnelle, G. Fuhr, “A 3-D microelectrode system for handling and caging single cells
    and particles,” Biosensors & Bioelectronics, 14, 247–256, 1998.
    [14] James C. Weaver, “Electroporation: A General Phenomenon for Manipulating Cells and Tissues,” Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology.
    [15] Gintautas Saulis, Saulius Šatkauskas, “Electroporation of biological membranes,” ISSN 1392-2130. Veterinarija Ir Zooechnika. T. 26 (48). 2004
    [16] Yong Huang, Boris Rubinsky, “Flow-through micro-electroporation chip for high efficiency single-cell genetic manipulation,” Sensors and Actuators A 104 205–212, 2003.
    [17] Yu-Cheng Lin, Min Li and Chao-Chin Wu, “Simulation and experimental demonstration of the electric field assisted electroporation microchip for in vitro gene delivery enhancement,” Lab on a Chip, 4, 104 – 108, 2004.
    [18] K.V.I.S. Kaler and R. Paul, “Bioparticle Mechatronics,” IEEE MEMS 1996.
    [19] Ned Cameron, Christine Darve, Christina Freyman, and Li Sun “Manipulation of Microbeads and Nanoparticles by Dielectrophoresis,” ME 395 March 16, 2004
    [20] A. Adjari, “Pumping liquids using asymmetric electrode arrays,” Phys. Rev. E 61 (1) R45, 2000.
    [21] N. G. Green, A. Ramos and H. Morgan, Ac electrokinetics: a survey of sub-micrometer particle dynamics, J. Phys. D: Appl. Phys. 33 (2000) 632 641.
    [22] Frederick F. Becker, Xiao-Bo Wang, Ying Huang, Ronald Pethig, Jody Vykoukal and Peter R. C. Gascoyne “Separation of human breast cancer cells from blood by differential dielectric affinity” Cell Biology Proc. Natl. Acad. Sci. USA Vol. 92, pp. 860-864, January 1995.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE