簡易檢索 / 詳目顯示

研究生: 楊螢蓁
Ying-Chen Yang
論文名稱: 酵母菌中七萬道爾吞熱休克蛋白Ssa1p和Ssa2p甲基化之研究
Methylation of Ssa1p and Ssa2p in Saccharomyces cerevisiae
指導教授: 王群
Chung Wang
林彩雲
Tsai-Yun Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 41
中文關鍵詞: 熱休克蛋白酵母菌甲基化
外文關鍵詞: Ssa1p, Ssa2p, yeast, Methylation, methyllysine, methylarginine
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蛋白質的後修飾作用(post-translational modification)包含了甲基化(methylation)、磷酸化(phosphorylation)…等。在生物體內某些蛋白分子之胺基酸在合成過程中可以被甲基化,如:組織胺酸(histidine)、離胺酸(lysine)和精胺酸(arginine),這些甲基化反應多半是不可逆的,但有可能是可被調控的,且往往在某些生理反應上扮演著重要的作用。在本論文中,我的實驗目的,是為了想去了解酵母菌(Saccharomyces cerevisiae)內分子量約略為七萬的熱休克蛋白(Ssa1p及Ssa2p)甲基化之狀況。我發現在正常的生長狀況下,熱休克蛋白(Ssa1p及Ssa2p)中某些離胺酸(lysine)和精胺酸(arginine)可以被甲基化。因此我試著想找出其甲基化的酵素(AdoMet-dependent methyltransferases),在一些實驗後,發現Ynl092wp可能是Ssa1p或Ssa2p的甲基化酵素(methyltransferases)。接著我利用雙突變菌種(double deletion strain)來探討這一課題。結果發現Ynl092wp並非Ssa1p的甲基化酵素。很不幸的,我們並沒有得到 ssa1Δynl092wΔ的雙突變種(double deletion strain),因此Ynl092wp是否為Ssa2p的甲基化酵素(methyltransferases)則不得而之。而Ssa1p和Ssa2p甲基化所扮演的作用亦不得而知,推測Ssa1p和Ssa2p的甲基化可能與生物體內的調節或是和反應基質(substrate)之間的相互作用力有著重要的關係。


    Protein methylation is one of the post-translational modifications that may have important function. The basic amino acid residues such as histidine, lysine, and arginine can be methylated in vivo; and the methylation on basic amino acid appears irreversible and coupled to protein synthesis. In this study, I characterized the methylation of the 70-KDa heat shock proteins (Ssa1p and Ssa2p) in Saccharomyces cerevisiae. I showed that Ssa1p and Ssa2p were methylated in cells grown under normal conditions. The Ssa1p and Ssa2p are methylated on lysine as well as arginine residue(s). I also intended to identify the Ssa1p and Ssa2p-specific S-adenosylmethionine (AdoMet)-dependent methyl-transferases. On first trial, it appeared that Ynl092wp might be responsible for the methylation of Ssa1p or Ssa2p. Then, the double deletion strain was generated for further study. It is clear that Ynl092wp was not a Ssa1p-specific methyltransferase. However, the ssa1Δ ynl092wΔ double mutant was not obtained. Thus, it remains to be determined if Ynl092wp is a methyltransferase responsible for the methylation of Ssa2p. Moreover, biological functions of methylated Ssa1p and Ssa2p need to been determined. It might have important function in cell regulation or substrate interaction.

    中文摘要 ………………………………..……………… i 謝誌 …………………………………....….………… ii Abstract ………………………………....………… iii Abbreviations …………………………………………… 1 Introduction ……….…………………….…………… 2 Materials and methods ………………………………. 7 Results ………..….…….……………………………. 12 Discussion ………....………………………………. 18 Tables …………….…………………….…………... 21 Figures ………….,…………………..…………….… 24 References ……………..………………………………. 37

    1. Craig, E. A. (1985) Rev. Biochem. 18, 239-280

    2. Lindquist, S (1986) Annu. Rev. Biochem. 55, 1151-1191.

    3. Chappell, T.G., Konforti, B.B., Schmid, S.L., Rothman, J.E. (1987). J. Biol. Chem 262, 746-751

    4. Flaherty, K.M., DeLuca-Flaherty, C., McKay, D.B. (1990). Nature 346, 623-628

    5. Bukau, B. and A. L. Horwich, (1998) Cell 92, 351.

    6. McCarty, J., A. Buchberger, J. Reinstein, and B. Bukau. (1995) J. Mol. Biol.249,126–137.

    7. Schmid, D., A. Baici, H. Gehring, and P. Christen. (1994) Science 263,971–973.

    8. Theyssen, H., Schuster, H. P., Packschies, L., Bukau, B., & Reinstein, J. (1996). J. Mol. Biol. 263, 657 670

    9. Lindquist, S., and Craig, E. A. (1988). Annu. Rev.Genet. 22, 631–677.

    10. Mukai, H., T. Kuno, H. Tanaka, D. Hirata, T. Miyakawa, and C. Tanaka.
    (1993). Gene 132, 57–66.

    11. Boorstein, W. R., Ziegelhoffer, T., and Craig, E. A. (1994) J. Mol. Evol. 38,1–17.

    12. James P, Pfund C, Craig EA. (1997) Science. 275(5298), 387-9.

    13. Pfund, C., Hoyo-Lopez, N., Ziegelhoffer, T., Schilke, B. A., Lopez-Buesa, P.,Walter, W. A., Wiedmann, M., and Craig, E. A. (1998) EMBO J. 17,3981–3989

    14. Nelson, R. J., Zeigelhoffer, T., Nicloet, C., Werner-Washburne, M., and Craig, E. A. (1992) Cell. 71, 97–105

    15. Werner-Washburne, M., Stone, D. E., and Craig, E. A. (1987) Mol. Cell. Biol. 7, 2568–2577

    16. Mayer, M. P., and Bukau, B. (1998) Biol. Chem. 379, 261–268

    17. Kim, S., Schilke, B., Craig, E. A., and Horwich, A. L. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 12860–12865

    18. Shulga, N., Roberts, P., Gu, S., Spitz, L., Tabb, M. M., Nomura, M., and Goldfarb. D. S. (1996) J. Cell Biol. 135, 329–339

    19. Oka, M., Nakai, M., Endo, T., Lim, C. R., Kimata, Y., and Kohno, K. (1998) J. Biol. Chem. 273, 29727–29737

    20. Stone, D. E., and Craig, E. A. (1990) Mol. Cell. Biol. 10, 1622–1632

    21. Johnson, B. A., Najbauer, J., and Aswad, D. W. (1993) J. Biol. Chem. 268, 6174–6181.

    22. Chuan Li, Li-Shuang Ai, Chia-Hui Lin, Mingli Hsieh, Yueh-Chun Li, and Shuan-Yow Li (1998) Arch Biochem Biophys. 351, 53-59

    23. Springer, M. S., Goy, M. F. and Adler, J. (1979) Nature 280, 279-284.

    24. Koshland, D. E. Jr. (1981) Ann. Rev. Biochem. 50, 765-782.

    25. Springer, M.S. Zanolari, B. and Pierzchala, P. A. (1992) J. Biol. Chem.257, 6861-6866.

    26. Szurmant H, Ordal GW. (2004) Microbiol Mol Biol Rev. 68(2), 301-19.

    27. DeLange, R. J., Glazer, A. N., and Smith, E. L. (1970) J. Biol. Chem. 245, 3325–3327

    28. Bogdan Polevoda, Mark R. Martzen, Biswadip Das, Eric M. Phizicky, and Fred Sherman (2000) J. Biol. Chem. 275, 20508–20513.

    29. Van Holde, K.E. (1989). In Chromatin (ed. A. Rich), pp. 169-180. Springer-Verlag, New York, NY.

    30. Strahl, B.D., Ohba, R., Cook, R.G., and Allis, C.D. (1999). Proc. Natl. Acad. Sci. 96, 14967-14972

    31. Briggs, S.D., Bryk, M., Strahl, B.D., Cheung, W.L., Davie, J.K., Dent, S.Y., Winston, F., and Allis, C.D. (2001). Genes & Dev. 15, 3286–3295.

    32. Rice JC, Allis CD. (2001) Curr Opin Cell Biol. 13(3), 263-73.

    33. Wang, C.,Gomer,R H., and Lazarides, E. (1981) Proc. Natl. Acad. Sci. U. S. A. 78,3531-3535.

    34. Wang, C., and Lazarides, E., O’Connor, C.M., and Clarke, S. (1982) J. Biol. Chem.257, 8356-8362.

    35. Wang C, Lin JM, Lazarides E. (1992) Arch Biochem Biophys. 297(1), 169-75.

    36. Pamela Zobel-Thropp, Jonathan D. Gary, and Clarke, S. (1998) J. Biol. Chem. 273, 29283–29286.

    37. Moore, S. (1968) J. Biol. Chem.243, 6281-628.

    38. Zobel-Thropp, P., Yang, M. C., Machado, L., and Clarke, S. (2000) J. Biol. Chem. 275, 37150–37158.

    39. Hrycyna, C. A., Yang, M. C., and Clarke, S. (1994) Biochemistry 33, 9806–9812.

    40. Niewmierzycka, A., and Clarke, S. (1999) J. Biol. Chem. 274, 814-824.

    41. Schubert H.L., Blumenthal R.M., Cheng X. (2003) Trends Biochem Sci. 28(6), 329-35

    42. Holzschu, D., Principio, L., Taylor, K., Hickey, D. R., Short, J., Rao, R., McLendon, G., and Sherman, F. (1987) J. Biol. Chem. 262, 7125–7131

    43. Takakura, H., Yamamoto, T., and Sherman, F. (1997) Biochemistry 36,2642–2648

    44. Rieder, R., and Bosshard, H. R. (1978) J. Biol. Chem. 253, 6045–6053

    45. Rieder, R., and Bosshard, H. R. (1980) J. Biol. Chem. 255, 4732–4739

    46. Speck, S. H., Ferguson-Miller, S., Osheroff, N., and Margoliash, E. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 155–159

    47. Ferguson-Miller, S., Brautigan, D. L., and Margoliash, E. (1978) J. Biol. Chem. 253, 149–159

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE