研究生: |
陳義斌 Chen, Yi-Pin |
---|---|
論文名稱: |
自旋極化穿隧掃描顯微鏡研究錳於自旋阻挫系統與蜂巢狀結構 Spin-Polarized Scanning Tunneling Microscopy Study of Mn-based System: From Spin Frustrated to Honeycomb Structures |
指導教授: |
徐斌睿
Hsu, Pin-Jui |
口試委員: |
李尚凡
Lee, Shang-Fan 王柏堯 Wang, Bo-Yao |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 自旋極化穿隧掃描顯微鏡 、120°反鐵磁結構 、蜂巢狀結構 |
外文關鍵詞: | 120° Néel antiferromagnetic structure, Manganesene Structure |
相關次數: | 點閱:37 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過自旋極化穿隧掃描式顯微鏡(Spin-Polarized Scanning Tunneling Microscopy, SP-STM)量測在單原子層Mn/Ag(111)中120° Néel反鐵磁結構(120° Antiferromagnetic Néel Structure)以及其行為,並且利用SP-STM模擬來解析自旋結構以及方向,進一步探討其中物理性質。在模擬上透過簡單的穿隧模型與針尖至樣品波函數自旋態修正的自旋閥模型,再加上程式上的模擬就可以簡單的模擬出在特定自旋結構下SP-STM量測到的表面原子圖像。實驗上量測到Mn原子以(1×1)成長在Ag(111)基板上,並且在自旋極化針尖的量測下可以得到(√3×√3)磁性結構,且SP-STM模擬與實驗結果相當吻合,並且透過模擬可以解出實際上量測到的樣品自旋方向以及對應針尖的自旋極化方向,最後透過這系列的研究方法我們還可以解析出磁疇壁間每個原子自旋的方向及變化行為。
緊接著將Mn成長至Bi/Ag(111)系統中,在這個系統中Bi在高溫下成長,且根據Bi鍍量的多寡會形成(√3×√3)R30° BiAg2合金(Alloying)以及(p×√3)的去合金(Dealloying)態,可惜的是Mn無法再有強自旋軌道效應的BiAg2合金上形成二維結構,但意外的是在不平整的去合金Bi表面上形成了平整的(2×2)蜂巢狀結構,透過研究去合金Bi的原子結構以及蜂巢狀結構島嶼周遭原子結構,我們猜測Mn會影響到Bi原子間的鍵結,導致Bi從去合金態轉變回BiAg3的(2×2)合金結構,且Mn在BiAg3上成長為蜂巢狀結構。
In this study, we have resolved the 120° Néel structure in real space by spin-polarized scanning tunneling microscopy (SP-STM) at monolayer Mn on Ag (111) , a and discuss the results in terms of various Néel spin textures by SP-STM simulations. In the simulations, a simple one-dimensional tunneling model combined with spin-valve model incorporating the tip-sample wavefunction spin states is utilized to simulate the surface spin structures observed in SP-STM measurements. Experimental results shows that monolayer Mn is not only pseudomorphically growing on Ag(111) but also shows the √3×√3 Néel spin structure within spin-polarized tip measurement. Comparing experiments with simulation results, we can reproduce the spin textures in different magnetic domains and understand the behavior of domain wall.
Next, Mn is grown on the Bi/Ag(111) system. where Bi is grown at high temperatures. Depending on the Bi coverage, (√3×√3)R30° BiAg2 alloying phase and dealloying phase are formed. Unfortunately, Mn cannot form a two-dimensional structure on the BiAg2 alloy phase. However, unexpectedly, Mn forms a flat (2×2) honeycomb structure on the structure reconstruction surface of the dealloying Bi. By studying the STM measurement atomic structure of the dealloying Bi , and the surrounding (√3×√3) BiAg2 alloying atomic of the honeycomb Mn islands, we speculate that Mn affects the bonding between Bi atoms, causing a transition from the Bi dealloying state back to the (2×2) BiAg3 alloy structure. So we can observe of the surface honeycomb Mn structure on top of the BiAg3 alloy.
1. Haze, M., Yoshida, Y. &Hasegawa, Y. Experimental verification of the rotational type of chiral spin spiral structures by spin-polarized scanning tunneling microscopy. Sci. Rep. 7, (2017).
2. Ferriani, P. et al. Atomic-scale Spin spiral with a unique rotational sense: Mn monolayer on W(001). Phys. Rev. Lett. 101, 1–4 (2008).
3. Yoshida, Y. et al. Conical spin-spiral state in an ultrathin film driven by higher-order spin interactions. Phys. Rev. Lett. 108, (2012).
4. Spethmann, J. et al. Discovery of Magnetic Single- And Triple- q States in Mn/Re (0001). Phys. Rev. Lett. 124, 1–6 (2020).
5. Gao, C. L., Wulfhekel, W. &Kirschner, J. Revealing the 120° antiferromagnetic Néel structure in real space: One monolayer Mn on Ag(111). Phys. Rev. Lett. 101, 1–4 (2008).
6. El-Kareh, L., Sessi, P., Bathon, T. &Bode, M. Quantum Interference Mapping of Rashba-Split Bloch States inBi/Ag(111). Phys. Rev. Lett. 110, (2013).
7. Sun, S. et al. Epitaxial Growth of Ultraflat Bismuthene with Large Topological Band Inversion Enabled by Substrate-Orbital-Filtering Effect. ACS Nano 16, 1436–1443 (2021).
8. Iqbal, Y., Hu, W. J., Thomale, R., Poilblanc, D. &Becca, F. Spin liquid nature in the Heisenberg J1-J2 triangular antiferromagnet. Phys. Rev. B 93, 1–16 (2016).
9. Novoselov, K. S. et al. Electric field in atomically thin carbon films. Science (80-. ). 306, 666–669 (2004).
10. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. &Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
11. Deacon, R. S., Chuang, K. C., Nicholas, R. J., Novoselov, K. S. &Geim, A. K. Cyclotron resonance study of the electron and hole velocity in graphene monolayers. Phys. Rev. B - Condens. Matter Mater. Phys. 76, 2–5 (2007).
12. Yang, T. et al. Atomically Thin 2D Transition Metal Oxides: Structural Reconstruction, Interaction with Substrates, and Potential Applications. Adv. Mater. Interfaces 6, 1–19 (2019).
13. Xu, Y. et al. Large-gap quantum spin hall insulators in tin films. Phys. Rev. Lett. 111, 1–5 (2013).
14. Kurz, P., Bihlmayer, G. &Blügel, S. Noncollinear magnetism of Cr and Mn monolayers on Cu(111). J. Appl. Phys. 87, 6101–6103 (2000).
15. Krüger, P., Taguchi, M. &Meza-Aguilar, S. Magnetism of 3d transition-metal monolayers on Cu(111)and Ag(111). Phys. Rev. B 61, 15277–15283 (2000).
16. Markov, A., Yakovlev, E., Shepel’, D. &Bestetti, M. Synthesis of a Cr-Cu surface alloy using a low-energy high-current electron beam. Results Phys. 12, 1915–1924 (2019).
17. Spethmann, J., Grünebohm, M., Wiesendanger, R., vonBergmann, K. &Kubetzka, A. Discovery and characterization of a new type of domain wall in a row-wise antiferromagnet. Nat. Commun. 12, 1–8 (2021).
18. Waśniowska, M., Schröder, S., Ferriani, P. &Heinze, S. Real space observation of spin frustration in Cr on a triangular lattice. Phys. Rev. B - Condens. Matter Mater. Phys. 82, 27–30 (2010).
19. Ouazi, S., Kubetzka, A., VonBergmann, K. &Wiesendanger, R. Enhanced atomic-scale spin contrast due to spin friction. Phys. Rev. Lett. 112, 1–4 (2014).
20. C. A. Hoffman, J. R. Meyer, F. J. Bartoli, A. Di Venere, X. J. Yi, C. L. Hou, H. C. Wang, J. B. Ketterson, and G. K. W. Semimetal-to-semiconductor transition in bismuth thin films. Phys. Rev. B 48, 431–434 (1993).
21. Hirahara, T. et al. Role of Spin-Orbit Coupling and Hybridization Effects in the Electronic Structure of Ultrathin Bi Films. 146803, 10–13 (2006).
22. Echenique, P. M., Bihlmayer, G., Gayone, J. E., Chulkov, E.V &Blu, S. Strong Spin-Orbit Splitting on Bi Surfaces. Phys. Rev. Lett. 1–4 (2004) doi:10.1103/PhysRevLett.93.046403.
23. Zhang, K. H. L. et al. Observation of a surface alloying-to-dealloying transition during growth of Bi on Ag(111). Phys. Rev. B 83, (2011).
24. McLeod, I. M. et al. Structure determination of the p fenced(sqrt(3) × sqrt(3)) R 30 {ring operator} Bi-Ag(111) surface alloy using LEED I-V and DFT analyses. Surf. Sci. 604, 1395–1399 (2010).
25. Kato, C., Aoki, Y. &Hirayama, H. Scanning tunneling microscopy of Bi-induced Ag(111) surface structures. Phys. Rev. B - Condens. Matter Mater. Phys. 82, 1–7 (2010).
26. Chen, C., Kepler, K. D., Gewirth, A. A., Ocko, B. M. &Wang, J. Scattering , Scanning Tunneling Microscopy , and Atomic Force Microscopy Lattice Structures. J. Phys. Chem 7290–7294 (1993).
27. Girard, Y. et al. Growth of Bi on Cu(111): Alloying and dealloying transitions. Surf. Sci. 617, 118–123 (2013).
28. Kaminski, D., Poodt, P., Aret, E., Radenovic, N. &Vlieg, E. Surface alloys, overlayer and incommensurate structures of Bi on Cu(111). Surf. Sci. 575, 233–246 (2005).
29. Go, D. et al. Toward surface orbitronics: giant orbital magnetism from the orbital Rashba effect at the surface of sp-metals. Sci. Rep. 7, (2017).
30. Tian, S. et al. Internal flow and cavitation analysis of scroll oil pump by cfd method. Processes 9, (2021).
31. Cho, A. Y. &Arthur, J. R. Molecular beam epitaxy. Prog. Solid State Chem. 10, 157–191 (1975).
32. NanoTechnology, O. Instruction Manual UHV Evaporator EFM3/4 Triple Evaporator EFM3T. (1996).
33. Binnig, G. &Rohrer, H. Scanning Tunneling Microscopy. IBM J. Res. Dev. 30, 355–369 (1986).
34. J. Bardeen. Tunneling from a many-particle point of view. Phys. Rev. 6, 57 (1961).
35. Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).
36. Slonczewski, J. C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 39, 6995–7002 (1989).
37. Gould, C. et al. Tunneling anisotropic magnetoresistance: A spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. 93, 1–4 (2004).
38. Matos-Abiague, A. &Fabian, J. Anisotropic tunneling magnetoresistance and tunneling anisotropic magnetoresistance: Spin-orbit coupling in magnetic tunnel junctions. Phys. Rev. B - Condens. Matter Mater. Phys. 79, (2009).
39. Gao, L. et al. Bias voltage dependence of tunneling anisotropic magnetoresistance in magnetic tunnel junctions with MgO and Al2O3 tunnel barriers. Phys. Rev. Lett. 99, 1–4 (2007).
40. Tersoff, J. &Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985).
41. Barrena, E. et al. On-surface products from de-fluorination of C 60 F 48 on Ag ( 111 ): C 60 , C 60 F x and silver fluoride formation. 1–6 (2021).