簡易檢索 / 詳目顯示

研究生: 邱裕升
Chiou, Yu-Sheng
論文名稱: 化學氣相沉積法低溫成長多晶碳化矽
Low Temperature Growth Polycrystalline Silicon Carbide by Chemical Vapor Deposition
指導教授: 甘炯耀
Gan, Jon-Yiew
口試委員: 李紫原
Lee, Chi-Young
林諭男
Lin, I-Nan
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 78
中文關鍵詞: 微波電漿輔助化學氣相蒸鍍四甲基矽烷碳化矽矽基堆疊型太陽能電池
外文關鍵詞: TMS, Si-based tandem solar cell
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,我們使用微波電漿輔助化學氣相蒸鍍系統來鍍製碳化矽薄膜。 在固定壓力為5 torr、TMS流量為5 sccm、製程時間為1小時的條件下,分別改變基板溫度、成膜平面高度和微波功率對生成碳化矽及其品質的影響。我們發現,在基板不額外加熱下,我們都可在(100)、(111)矽晶和二氧化矽上成功鍍製出多晶3C-SiC薄膜。和文獻報導的600 ℃以上的鍍製溫度相比,我們成功地降低製程溫度到可以在各種基材鍍製3C-SiC。由於可以有效壓低鍍製溫度,更有利於應用在矽基堆疊型太陽能電池或微機電系統上。
    對於成膜速率而言,當基板溫度上升,成膜速率隨著溫度上升而下降,這說明我們的系統的順向反應可能為放熱過程,而逆向反應為吸熱過程。從Raman與GIXRD的分析來看,當微波功率上升時,不僅促進碳化矽的生成,也使3C-SiC薄膜的結晶變好,可能是因為原子氫的濃度上升,增強清除晶體上二次成核位置缺陷,進而提升碳化矽結晶品質;基板溫度上升,一面促進碳化矽的生成,另一面也使結晶變得更好;成膜平面高度上升,也會促進碳化矽的生成,另外,我們認為成膜平面高度上升,越來越接近電漿中心,使結晶變得更好。


    In this work, we have fabricated the polycrystalline 3C-SiC thin films using the microwave plasma enhanced chemical vapor deposition (MPECVD). The fabrication was typically carried out mainly at 5 torr of working pressure, 5 sccm tetramethylsilane (TMS) as the precursor, and 1 hour of deposition time. In seeking the optimum condition of deposition, we have also performed the deposition under various substrate temperatures, sample positions with respect to the plasma glow, and microwave power. One of the important finding of this work is that we are able to fabricate the 3C-SiC thin films on both (111) and (100) Si wafers and on SiO2 without any additional heating but microwave plasma. The later will raise the substrate temperature to about 300 ℃ that is still much lower than the reported deposition temperature (> 600 ℃) of 3C-SiC. The low fabrication temperature is beneficial and allows 3C-SiC to be deposited over a wide variety of objects, including the integration of Si-based tandem solar cells or microelectromechanical systems.
    The deposition rate has been examined in the work, and it was found to decrease as the substrate temperature increases. From the examination of Raman, GIXRD, and XPS, the crystallinity of 3C-SiC was found to be improved with high substrate temperature, microwave power, and raising substrate close to the center of plasma glow. It is believed that these effects are attributed to the plasma power and additional substrate may have prevented the seeding of other polymorphs of graphite.

    目錄 中文摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章 序論 1 第二章 文獻回顧 6 2.1 碳化矽 6 2.1.1 碳化矽特性 6 2.1.2 碳化矽結構 7 2.1.3 碳化矽發展 8 2.1.4 碳化矽磊晶 10 2.1.5 3C-SiC異質磊晶 13 2.1.6 多晶3C-SiC應用 16 2.2 堆疊型太陽能電池 20 2.2.1 堆疊型太陽能電池工作原理 20 2.2.2 透明導電層應用於串疊型太陽能電池之材料選擇與特性需求 24 2.2.3 碳化矽應用在串疊型太陽能電池上 30 第三章 實驗步驟與方法 32 3.1 實驗系統 32 3.2 矽基板清洗 32 3.3 碳化矽薄膜成長 33 第四章 結果與討論 36 4.1 碳化矽之成膜速率 36 4.2 溫度對碳化矽結晶品質的影響 42 4.3 微波功率對碳化矽結晶品質的影響 52 4.4 成膜平面高度對碳化矽結晶品質的影響 55 4.5 不同基板 61 第五章 結論 64 參考文獻 66

    1. Emrani, A. and Spadoni, S., "Improving Multi-Voltage Electrical System Performance with Smart Step-Down Converters," SAE Technical Paper 2017-01-1668, 2017
    2. 黃智方、張庭輔, “氮化鎵功率元件簡介”, 功率電子專刊I, Vol. 20, pp. 30-40, 2014.
    3. https://www.electronicsweekly.com/uncategorised/gan-on-si-power-transistors-french-lab-leti-2015-07/
    4. Tsunenobu Kimoto, “Bulk and epitaxial growth of silicon carbide”, Progress in Crystal Growth and Characterization of Materials, Vol. 62, pp. 329-351, 2016.
    5. Wei-Cheng Lien, Nicola Ferralis, Carlo Carraro, and Roya Maboudian, “Growth of Epitaxial 3C-SiC Films on Si(100) via Low Temperature SiC Buffer Layer”, Crystal Growth & Design, Vol. 10, pp. 36-39, 2010.
    6. V. Cimalla, Th Stauden, G. Eichhorn, and J. Pezoldt, “Influence of the heating ramp on the heteroepitaxial growth of SiC on Si”, Materials Science and Engineering: B, Vol. 61-62, pp. 553-558, 1999.
    7. J. Anthony Powell Shigehiro Nishino, and Herbert A. Will, “Production of large-area single-crystal wafers of cubic SiC for semiconductor devices ”, Appl. Phys. Lett., Vol. 42, pp. 460-462, 1983.
    8. Hao Zhuang, Lei Zhang, Thorsten Staedler, and Xin Jiang, “Low Temperature Hetero-Epitaxial Growth of 3C-SiC Films on Si Utilizing Microwave Plasma CVD”, Chemical Vapor Deposition, Vol. 19, pp. 29-37, 2013.
    9. G Lombardi, K Hassouni, GD Stancu, L Mechold, J Röpcke, and A Gicquel, “Study of an H2/CH4 moderate pressure microwave plasma used for diamond deposition: modelling and IR tuneable diode laser diagnostic”, Plasma Sources Science and Technology, Vol. 14, pp. 440, 2005.
    10. William Shockley and Hans J. Queisser, “Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells”, Journal of Applied Physics, Vol. 32, pp. 510-519, 1961.
    11. Martin A Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes”, IEEE Transactions on electron devices, Vol. 31, pp. 671-678, 1984.
    12. Kunta Yoshikawa, Wataru Yoshida, Toru Irie, Hayato Kawasaki, Katsunori Konishi, Hirotaka Ishibashi, Tsuyoshi Asatani, Daisuke Adachi, Masanori Kanematsu, Hisashi Uzu, and Kenji Yamamoto, “Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology”, Solar Energy Materials and Solar Cells, Vol. 173, pp. 37-42, 2017.
    13. Thomas P. White, Niraj N. Lal, and Kylie R. Catchpole, “Tandem Solar Cells Based on High-Efficiency c-Si Bottom Cells: Top Cell Requirements for >30% Efficiency”, IEEE Journal of Photovoltaics, Vol. 4, pp. 208-214, 2014.
    14. Sarah R. Kurtz, P. Faine, and J. M. Olson, “Modeling of two‐junction, series‐connected tandem solar cells using top‐cell thickness as an adjustable parameter”, Journal of Applied Physics, Vol. 68, pp. 1890-1895, 1990.
    15. Kwang Joo Kim, Kwang-Young Lim, and Young-Wook Kim, “Effective Nitrogen Doping for Fabricating Highly Conductive β-SiC Ceramics”, Journal of the American Ceramic Society, Vol. 94, pp. 3216-3219, 2011.
    16. Kriener Markus, Muranaka Takahiro, Kato Junya, Ren Zhi-An, Akimitsu Jun, and Maeno Yoshiteru, “Superconductivity in heavily boron-doped silicon carbide”, Science and Technology of Advanced Materials, Vol. 9, pp. 044205, 2008.
    17. Stephanie Essig, Scott Ward, Myles A. Steiner, Daniel J. Friedman, John F. Geisz, Paul Stradins, and David L. Young, “Progress Towards a 30% Efficient GaInP/Si Tandem Solar Cell”, Energy Procedia, Vol. 77, pp. 464-469, 2015.
    18. Pierre Masri, “Silicon carbide and silicon carbide-based structures: The physics of epitaxy”, Surface Science Reports, Vol. 48, pp. 1-51, 2002.
    19. Marek Skowronski and Tsunenobu Kimoto, “Silicon Carbide Epitaxy”, T. Kuech, Handbook of Crystal Growth (Second Edition), Elsevier, pp. 1135-1167, 2015.
    20. James A. Cooper Tsunenobu Kimoto, “Fundamentals of Silicon Carbide Technology”, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications, Wiley-IEEE, pp. 1-9, 2014.
    21. Michael Shur, Sergey L. Rumyantsev, Michael Levinshtein, “SiC Materials and Devices”, volume 1, World Scientific Publishing Co. Pte. Ltd., 2006.
    22. Andrea Severino, “3C-SiC epitaxial growth on large area silicon: Thin films”, F.L. Via, Silicon Carbide Epitaxy, Research Signpost, pp. 145-191, 2012.
    23. Peng Lu, J. H. Edgar, O. J. Glembocki, P. B. Klein, E. R. Glaser, J. Perrin, and J. Chaudhuri, “High-speed homoepitaxy of SiC from methyltrichlorosilane by chemical vapor deposition”, Journal of Crystal Growth, Vol. 285, pp. 506-513, 2005.
    24. Brian Wagner, James D. Oliver, N. B. Singh, M. King, S. McLaughlin, D. Kahler, D. Knuteson, A. Berghmans, and R. Rai, “Low Temperature Epitaxy of 3C SiC Using Hexamethyldisilane Precursor on Si <111> Substrates”, Materials Science Forum, Vol. 717-720, pp. 185-188, 2012.
    25. Liudi Jiang and Rebecca Cheung, “A review of silicon carbide development in MEMS applications”, International Journal of Computational Materials Science and Surface Engineering, Vol. 2, pp. 227, 2009.
    26. M. Mehregany, C. A. Zorman, N. Rajan, and Wu Chien Hung, “Silicon carbide MEMS for harsh environments”, Proceedings of the IEEE, Vol. 86, pp. 1594-1609, 1998.
    27. D. G. Senesky, B. Jamshidi, K. B. Cheng, and A. P. Pisano, “Harsh Environment Silicon Carbide Sensors for Health and Performance Monitoring of Aerospace Systems: A Review”, IEEE Sensors Journal, Vol. 9, pp. 1472-1478, 2009.
    28. Yvon Cordier, Marc Portail, Sébastien Chenot, Olivier Tottereau, Marcin Zielinski, and Thierry Chassagne, “AlGaN/GaN high electron mobility transistors grown on 3C-SiC/Si(111)”, Journal of Crystal Growth, Vol. 310, pp. 4417-4423, 2008.
    29. 李威儀和李世昌, “III-V族半導體太陽電池”, 黃惠良和曾百亨, 太陽電池, 五南圖書出版股份有限公司, pp. 331-341, 2008.
    30. ED Jackson, “Areas for improvement of the semiconductor solar energy converter”, Transactions of the Conference on the Use of Solar Energy, Vol. 5, pp. 122-126, 1955.
    31. C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells”, Journal of Applied Physics, Vol. 51, pp. 4494-4500, 1980.
    32. 林明獻, “多接面太陽電池之設計”, 太陽電池技術入門, 全華圖書股份有限公司, pp. 9-11, 2016.
    33. 楊茹媛 翁敏航, 管鴻, 晁成虎, “多接面、多能隙及堆疊型太陽能電池”, 翁敏航, 太陽能電池:原理、元件、材料、製程與檢測技術, 臺灣東華書局股份有限公司, pp. 336-339, 2010.
    34. Niraj N. Lal, Yasmina Dkhissi, Wei Li, Qicheng Hou, Yi-Bing Cheng, and Udo Bach, “Perovskite Tandem Solar Cells”, Advanced Energy Materials, Vol. 7, pp. 1602761, 2017.
    35. F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, “Efficiency limits for single-junction and tandem solar cells”, Solar Energy Materials and Solar Cells, Vol. 90, pp. 2952-2959, 2006.
    36. P. Löper, B. Niesen, S. J. Moon, S. Martín de Nicolas, J. Holovsky, Z. Remes, M. Ledinsky, F. J. Haug, J. H. Yum, S. De Wolf, and C. Ballif, “Organic–Inorganic Halide Perovskites: Perspectives for Silicon-Based Tandem Solar Cells”, IEEE Journal of Photovoltaics, Vol. 4, pp. 1545-1551, 2014.
    37. Armin G. Aberle, “Surface passivation of crystalline silicon solar cells: a review”, Progress in Photovoltaics: Research and Applications, Vol. 8, pp. 473-487, 2000.
    38. Tadatsugu Minami, “Transparent conducting oxide semiconductors for transparent electrodes”, Semiconductor Science and Technology, Vol. 20, pp. S35-S44, 2005.
    39. H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices”, Journal of Applied Physics, Vol. 86, pp. 6451-6461, 1999.
    40. E. Elangovan and K. Ramamurthi, “A study on low cost-high conducting fluorine and antimony-doped tin oxide thin films”, Applied Surface Science, Vol. 249, pp. 183-196, 2005.
    41. A. E. Rakhshani, Y. Makdisi, and H. A. Ramazaniyan, “Electronic and optical properties of fluorine-doped tin oxide films”, Journal of Applied Physics, Vol. 83, pp. 1049-1057, 1998.
    42. H. Kim, C. M. Gilmore, J. S. Horwitz, A. Piqué, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices”, Applied Physics Letters, Vol. 76, pp. 259-261, 2000.
    43. Kun Ho Kim, Ki Cheol Park, and Dae Young Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering”, Journal of Applied Physics, Vol. 81, pp. 7764-7772, 1997.
    44. Andrew J Leenheer, John D Perkins, Maikel FAM Van Hest, Joseph J Berry, Ryan P O’Hayre, and David S Ginley, “General mobility and carrier concentration relationship in transparent amorphous indium zinc oxide films”, Physical Review B, Vol. 77, pp. 115215, 2008.
    45. N. Ito, Y. Sato, P. K. Song, A. Kaijio, K. Inoue, and Y. Shigesato, “Electrical and optical properties of amorphous indium zinc oxide films”, Thin Solid Films, Vol. 496, pp. 99-103, 2006.
    46. N. Naghavi, A. Rougier, C. Marcel, C. Guéry, J. B. Leriche, and J. M. Tarascon, “Characterization of indium zinc oxide thin films prepared by pulsed laser deposition using a Zn3In2O6 target”, Thin Solid Films, Vol. 360, pp. 233-240, 2000.
    47. Bo Chen, Yang Bai, Zhengshan Yu, Tao Li, Xiaopeng Zheng, Qingfeng Dong, Liang Shen, Mathieu Boccard, Alexei Gruverman, Zachary Holman, and Jinsong Huang, “Efficient Semitransparent Perovskite Solar Cells for 23.0%-Efficiency Perovskite/Silicon Four-Terminal Tandem Cells”, Advanced Energy Materials, Vol. 6, pp. 1601128, 2016.
    48. Felix Lang, Marc A Gluba, Steve Albrecht, Jörg Rappich, Lars Korte, Bernd Rech, and Norbert H Nickel, “Perovskite solar cells with large-area CVD-graphene for tandem solar cells”, The journal of physical chemistry letters, Vol. 6, pp. 2745-2750, 2015.
    49. Daniel A Jacobs, Kylie R Catchpole, Fiona J Beck, and Thomas P White, “A re-evaluation of transparent conductor requirements for thin-film solar cells”, Journal of Materials Chemistry A, Vol. 4, pp. 4490-4496, 2016.
    50. K. E. Brown and K. S. Choi, “Electrochemical synthesis and characterization of transparent nanocrystalline Cu2O films and their conversion to CuO films”, Chem Commun (Camb), Vol. pp. 3311-3, 2006.
    51. I. Grozdanov, M. Ristov, Gj Sinadinovski, and M. Mitreski, “Fabrication of amorphous Sb2S3 films by chemical deposition”, Journal of Non-Crystalline Solids, Vol. 175, pp. 77-83, 1994.
    52. Gwan-Hyoung Lee, Young-Jun Yu, Xu Cui, Nicholas Petrone, Chul-Ho Lee, Min Sup Choi, Dae-Yeong Lee, Changgu Lee, Won Jong Yoo, and Kenji Watanabe, “Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures”, ACS nano, Vol. 7, pp. 7931-7936, 2013.
    53. W. L. Zhu, J. L. Zhu, S. Nishino, and G. Pezzotti, “Spatially resolved Raman spectroscopy evaluation of residual stresses in 3C-SiC layer deposited on Si substrates with different crystallographic orientations”, Applied Surface Science, Vol. 252, pp. 2346-2354, 2006.
    54. J. Hiie, T. Dedova, V. Valdna, and K. Muska, “Comparative study of nano-structured CdS thin films prepared by CBD and spray pyrolysis: Annealing effect”, Thin Solid Films, Vol. 511-512, pp. 443-447, 2006.
    55. M Ganchev, N Stratieva, E Tzvetkova, and I Gadjov, “Kinetics of the chemical bath deposition of ZnSe films”, Journal of Materials Science: Materials in Electronics, Vol. 14, pp. 847-848, 2003.
    56. G. Ziegler, P. Lanig, D. Theis, and C. Weyrich, “Single crystal growth of SiC substrate material for blue light emitting diodes”, IEEE Transactions on Electron Devices, Vol. 30, pp. 277-281, 1983.
    57. Naglaa Fathy, Ryohei Kobayashi, and Masaya Ichimura, “Preparation of ZnS thin films by the pulsed electrochemical deposition”, Materials Science and Engineering: B, Vol. 107, pp. 271-276, 2004.
    58. S. B. Zhang, Su-Huai Wei, and Alex Zunger, “A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–VI2 compounds”, Journal of Applied Physics, Vol. 83, pp. 3192-3196, 1998.
    59. Joonghwan Kwak, Seong Won Kwon, and Koeng Su Lim, “Fabrication of a n–p–p tunnel junction for a protocrystalline silicon multilayer/amorphous silicon tandem solar cell”, Journal of Non-Crystalline Solids, Vol. 352, pp. 1847-1850, 2006.
    60. Jenny H. Shim, Seh-Won Ahn, and Heon-Min Lee, “Microcrystalline silicon oxide (μc-SiO:H) alloys as a contact layer for highly efficient Si thin film solar cell”, Current Applied Physics, Vol. 13, pp. 1401-1403, 2013.
    61. Manuel Schnabel, Mariaconcetta Canino, Kai Schillinger, Philipp Löper, Caterina Summonte, Peter R. Wilshaw, and Stefan Janz, “Monolithic Si nanocrystal/crystalline Si tandem cells involving Si nanocrystals in SiC”, Progress in Photovoltaics: Research and Applications, Vol. 24, pp. 1165-1177, 2016.
    62. Milton Ohring, “Chemical Vapor Deposition”, Materials Science of Thin Films 2nd Edition, pp. 309-312, 2001.
    63. Lydia Nemec, Volker Blum, Patrick Rinke, and Matthias Scheffler, “Thermodynamic Equilibrium Conditions of Graphene Films on SiC”, Physical Review Letters, Vol. 111, pp. 065502, 2013.
    64. S. Nakashima and H. Harima, “Raman Investigation of SiC Polytypes”, physica status solidi (a), Vol. 162, pp. 39-64, 1997.
    65. Lilin Li, Baoshan An, Abhishek Lahiri, Peijie Wang, and Yan Fang, “Doublet of D and 2D bands in graphene deposited with Ag nanoparticles by surface enhanced Raman spectroscopy”, Carbon, Vol. 65, pp. 359-364, 2013.
    66. Paweł Borowicz, Tomasz Gutt, Tomasz Małachowski, and Mariusz Latek, “Carbonic inclusions on SiC/SiO2 interface investigated with Raman Scattering”, Diamond and Related Materials, Vol. 20, pp. 665-674, 2011.
    67. Xinfa Qiang, Hejun Li, Yulei Zhang, Song Tian, and Jianfeng Wei, “Synthesis of SiC/SiO2 nanocables by chemical vapor deposition”, Journal of Alloys and Compounds, Vol. 572, pp. 107-109, 2013.
    68. R. J. Iwanowski, K. Fronc, W. Paszkowicz, and M. Heinonen, “XPS and XRD study of crystalline 3C-SiC grown by sublimation method”, Journal of Alloys and Compounds, Vol. 286, pp. 143-147, 1999.
    69. LK Bekessy, NA Raftery, and S Russell, “Anomalous Scattering from Single Crystal Substrate”, Adv. X-ray Anal, Vol. 50, pp. 177-181, 2007.
    70. Bibhu P. Swain, “The analysis of carbon bonding environment in HWCVD deposited a-SiC:H films by XPS and Raman spectroscopy”, Surface and Coatings Technology, Vol. 201, pp. 1589-1593, 2006.
    71. Afzal Khan and Chacko Jacob, “Random and self-aligned growth of 3C-SiC nanorods via VLS–VS mechanism on the same silicon substrate”, Materials Letters, Vol. 135, pp. 103-106, 2014.
    72. B. Lanfant, Y. Leconte, G. Bonnefont, V. Garnier, Y. Jorand, S. Le Gallet, M. Pinault, N. Herlin-Boime, F. Bernard, and G. Fantozzi, “Effects of carbon and oxygen on the spark plasma sintering additive-free densification and on the mechanical properties of nanostructured SiC ceramics”, Journal of the European Ceramic Society, Vol. 35, pp. 3369-3379, 2015.
    73. M. Veres, M. Koós, S. Tóth, M. Füle, I. Pócsik, A. Tóth, M. Mohai, and I. Bertóti, “Characterisation of a-C:H and oxygen-containing Si:C:H films by Raman spectroscopy and XPS”, Diamond and Related Materials, Vol. 14, pp. 1051-1056, 2005.
    74. 徐永東 肖鹏, 黄伯雲, “沉積條件對CVD-SiC沉積熱力學與形貌的影響”, Jorunal of Inorganic Materials, Vol. 17, pp. 877-881, 2002.

    QR CODE