研究生: |
江承翰 Chiang, Cheng-Han |
---|---|
論文名稱: |
3D列印KNN/P(VDF-TrFE) 可撓性無鉛壓電複合材 3D Printed KNN/P(VDF-TrFE) Ceramic-polymer Composite–Flexible Lead-free Piezoelectric Material |
指導教授: |
李紫原
Lee, Chi-Young |
口試委員: |
徐文光
Hsu, Wen-Kuang 裘性天 Chiu, Hsin-Tien |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 氟化三氟聚乙烯 、KNN無鉛壓電陶瓷 、可撓性無鉛壓電複合材 、3D列印 |
外文關鍵詞: | P(VDF-TrFE), KNN, Flexible Lead-Free Piezoelectric Composites, 3D Printing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用水熱法合成鈮酸鉀與鈮酸鈉,再將鈮酸鉀與鈮酸鈉以等莫耳比例混合燒結製成無鉛壓電陶瓷K0.5Na0.5NbO3 (KNN)。將不同量的KNN粉末與壓電高分子P(VDF-TrFE)混進丁酮溶液製備成漿料,再利用由工程積木組件自製的3D列印機印製出可撓性無鉛壓電複合材。
壓電複合材以P(VDF-TrFE)壓電高分子為基材,其中包埋KNN壓電陶瓷顆粒。KNN粉末粒徑在10 μm以下。壓電複合材整體厚度介於30~50 μm。經FTIR量測可知摻雜KNN有助於引致P(VDF-TrFE)的壓電性β晶相形成。將不同漿料印製成的壓電複合材依序經過乾燥、退火、極化處理,進行D33量測與落球衝擊試驗量測輸出電流,兩者的實驗結果展現相似趨勢。KNN的D33約82 pC/N;P(VDF-TrFE)之D33約24 pC/N。複合材的D33皆介於P(VDF-TrFE)與KNN之間,摻雜2 wt% KNN漿料印製成的樣本經極化處理後產生最佳的壓電表現 (D33約59 pC/N),摻雜3 wt% KNN 漿料印製成的樣本僅需經過乾燥處理就有相對優異的壓電表現(D33約51 pC/N)。本實驗之原料設計彈性、電腦輔助工程及小批量生產的特性,在講求客製化製造型態的工業4.0時代中極具發展潛力。
KNbO3 and NaNbO3 micron-sized particles were synthesized by hydrothermal process, then the equimolar KNbO3 and NaNbO3 were mixed and sintered into (K0.5Na0.5)NbO3 (KNN). KNN particles were mixed with P(VDF-TrFE) in MEK as slurry for 3D printing. Flexible lead-free piezoelectric composites were printed by a homemade 3D printer.
Piezoelectric composites were composed of KNN piezoelectric ceramic particles dispersed in P(VDF-TrFE) piezoelectric polymer matrix. The size of KNN particles is limited within 10 μm, and the thickness of printed piezoelectric composites is within the range of 30 to 50μm. FTIR results of composites show that the addition of KNN particles induces the crystallization of P(VDF-TrFE) piezoelectric β-phase. Printed composites were further processed in order of drying, annealing and poling treatment. Then the piezoelectric parameters D33 of composites undergone different treatment were measured. Drop-impact test was also conducted to measure the current output performance of composites. The results of D33 and current output show similar trends. The D33 value of composites is between synthesized KNN (~82 pC/N) and P(VDF-TrFE) (~24 pC/N). The composites made of slurry containing 2 wt% KNN show the highest D33 (~59 pC/N) after annealing and poling. The dried composites made of slurry containing 3 wt% KNN without any heat treatment show relatively excellent piezoelectric performance (D33~51 pC/N). The features of slurry design flexibility, computer aided engineering and batch production of this research are promising in industry 4.0 era.
[1] A.Bailato, “Piezoelectricity: History and New Thrusts,” pp. 575–583, 1996.
[2] S.Mishra, L.Unnikrishnan, S. K. Nayak, and S. Mohanty, “Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications : A Systematic Review, ” vol. 1800463, pp. 1–25, 2019.
[3] W.Van Beveren, “Effects of LiF on the Structure and Electrical Properties of (Na0.52K0.435Li0.045)Nb0.87Sb0.08Ta0.05O3 Lead-Free Piezoelectric Ceramics Sintered at Low Temperatures,” Sensors (Switzerland), vol. 432, no. November, pp. 2–5, 2004.
[4] E.Ringgaard and T.Wurlitzer, “Lead-free piezoceramics based on alkali niobates,” J. Eur. Ceram. Soc., vol. 25, no. 12 SPEC. ISS., pp. 2701–2706, 2005.
[5] A.Dielectrics, “Lead-free piezoelectrics : Current status and perspectives,” J. Adv. Dielectr., vol. 03, no. September, 2013.
[6] Z.Wang, Y.Hu, W.Wang, D.Zhou, Y.Wang, and H.Gu, “Electromechanical Conversion Behavior of K0.5Na0.5NbO3 Nanorods Synthesized by Hydrothermal Method,” Integr. Ferroelectr., vol. 142, no. 1, pp. 24–30, 2013.
[7] H.Birol, D.Damjanovic, and N.Setter, “Preparation and characterization of ( K0.5 Na0.5)NbO3 ceramics,” J. Eur. Ceram. Soc., vol. 26, pp. 861–866, 2006.
[8] D.Wang, K.Zhu, H.Ji, and J.Qiu, “Two-step sintering of the pure K0.5Na0.5NbO3 lead-free piezoceramics and its piezoelectric properties,” Ferroelectrics, vol. 392, no. 1, pp. 120–126, 2009.
[9] T.Takenaka, “Lead-free piezo-ceramics,” Adv. Piezoelectric Mater. Sci. Technol., pp. 130–170, 2010.
[10] P. K. Panda and B. Sahoo, “PZT to lead free piezo ceramics: A review,” Ferroelectrics, vol. 474, no. 1, pp. 128–143, 2015.
[11] D. Mao, B. E. Gnade, and M. A. Quevedo-lopez, “Ferroelectric Properties and Polarization Switching Kinetic of Poly (vinylidene fluoride-trifluoroethylene) Copolymer,” Ferroelectrics - Physical Effects, 2011.
[12] J. Qian et al., “Unveiling the piezoelectric nature of polar α-phase P(VDF-TrFE) at quasi-two-dimensional limit,” Sci. Rep., vol. 8, no. 1, pp. 1–9, 2018.
[13] P. Sharma, T. Reece, D. Wu, V. M. Fridkin, and S. Ducharme, “Nanoscale domain patterns in ultrathin polymer ferroelectric films,” J. Phys. Condens. Matter, vol. 21, no. 48, pp. 0–6, 2009.
[14] K.Yu, M.Yoon, T.Kwon, and S.Lee, “Distributed flexible tactile sensor system,” Int. J. Appl. Electromagn. Mech., vol. 18, no. 1–3, pp. 53–65, 2018.
[15] C. C.Hong, S. Y.Huang, J.Shieh, and S. H.Chen, “Enhanced piezoelectricity of nanoimprinted sub-20 nm poly(vinylidene fluoride-trifluoroethylene) copolymer nanograss,” Macromolecules, vol. 45, no. 3, pp. 1580–1586, 2012.
[16] N. Meng, X. Zhu, R. Mao, M. J. Reece, and E. Bilotti, “Nanoscale interfacial electroactivity in PVDF/PVDF-TrFE blended films with enhanced dielectric and ferroelectric properties,” J. Mater. Chem. C, vol. 5, no. 13, pp. 3296–3305, 2017.
[17] N. An, H. Liu, Y. Ding, M. Zhang, and Y. Tang, “Applied Surface Science Preparation and electroactive properties of a PVDF / nano-TiO2 composite film,” Appl. Surf. Sci., vol. 257, no. 9, pp. 3831–3835, 2011.
[18] B. Ponraj, R. Bhimireddi, and K. B. R. Varma, “Effect of nano- and micron-sized K0.5Na0.5NbO3 fillers on the dielectric and piezoelectric properties of PVDF composites,” J. Adv. Ceram., vol. 5, no. 4, pp. 308–320, 2016.
[19] I. Y. Abdullah, M. Yahaya, M. H. H. Jumali, and H. M. Shanshool, “Enhancement piezoelectricity in poly(vinylidene fluoride) by filler piezoceramics lead-free potassium sodium niobate (KNN),” Opt. Quantum Electron., vol. 48, no. 2, pp. 1–9, 2016.
[20] H. J. Chen et al., “Investigation of PVDF-TrFE composite with nanofillers for sensitivity improvement,” Sensors Actuators, A Phys., vol. 245, pp. 135–139, 2016.
[21] S. F. Mendes , C. M. Costa., and C.Caparros, “Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/ BaTiO3 nanocomposites,” J. Mater. Sci., vol. 47, no. 3, pp. 1378–1388, 2012.
[22] P. K.Singh and M. S.Gaur, “Enhancement of β-phase of P(VDF-TrFE) 60/40 by BaTiO3 nanofiller,” Ferroelectrics, vol. 524, no. 1, pp. 37–43, 2018.
[23] H.Search et al., “Pure β-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites,” no. J. Phys. D: Appl. Phys., 2017.
[24] X.Wang, B.Yang, J.Liu, Y.Zhu, C.Yang, and Q.He, “A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices,” Sci. Rep., vol. 6, no. October, pp. 1–10, 2016.
[25] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Compos. Part B Eng., vol. 143, no. December 2017, pp. 172–196, 2018.
[26] H.Kim, T.Fernando, M.Li, Y.Lin, and T.-L. B.Tseng, “Fabrication and characterization of 3D printed BaTiO3 /PVDF nanocomposites,” J. Compos. Mater., p. 002199831770470, 2017.
[27] H. Kim, F. Torres, D. Villagran, C. Stewart, Y. Lin, and T.-L. B. Tseng, “3D Printing of BaTiO3/PVDF Composites with Electric In Situ Poling for Pressure Sensor Applications,” Macromol. Mater. Eng., vol. 1700229, p. 1700229, 2017.
[28] S. Bodkhe, G. Turcot, F. P. Gosselin, and D. Therriault, “One-Step Solvent Evaporation-Assisted 3D Printing of Piezoelectric PVDF Nanocomposite Structures,” ACS Appl. Mater. Interfaces, vol. 9, no. 24, pp. 20833–20842, 2017.
[29] T. Maeda, N. Takiguchi, M. Ishikawa, T. Hemsel, and T. Morita, “(K,Na)NbO3 lead-free piezoelectric ceramics synthesized from hydrothermal powders,” Mater. Lett., vol. 64, no. 2, pp. 125–128, 2010.
[30] C. Wattanawikkam, S. Chootin, and T. Bongkarn, “Crystal structure, microstructure, dielectric and piezoelectric properties of lead-free KNN ceramics fabricated via combustion method,” Ferroelectrics, vol. 473, no. 1, pp. 24–33, 2014.
[31] G. Isobe, T. Maeda, P. Bornmann, T. Hemsel, and T. Morita, “Synthesis of lead-free piezoelectric powders by ultrasonic-assisted hydrothermal method and properties of sintered (K0.48Na0.52)NbO3 ceramics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 61, no. 2, pp. 225–230, 2014.
[32] W. J.Hu et al., “Universal ferroelectric switching dynamics of vinylidene fluoride-trifluoroethylene copolymer films,” Sci. Rep., vol. 4, pp. 1–8, 2014.
[33] K. Wang and J. Li, “(K,Na) NbO3-based lead-free piezoceramics : Phase transition , sintering and property enhancement,” Journal of Advanced Ceramics, vol. 1, no. 1. pp. 24–37, 2012.
[34] Y. Yachi, T. Yoshimura, and N. Fujimura, “Effect of the Annealing Temperature of P (VDF/TrFE) Thin Films on their Ferroelectric Properties,” J. Korean Phys. Soc., vol. 62, no. 7, pp. 1065–1068, 2013.
[35] Y. Mabuchi, T. Nakajima, T. Furukawa, and S. Okamura, “Electric-Field-Induced Polarization Enhancement of Vinylidene Fluoride/Trifluoroethylene Copolymer Ultrathin Films,” Appl. Phys. Express, vol. 4, no. 7, pp. 8–11, 2011.
[36] Sampada Bodkhe, P.S.M. Rajesh, Frederick P Gosselin, and Daniel Therriault, “Simultaneous 3d printing and poling of pvdf and its nanocomposites,” ACS Appl. Energy Mater., 2018.
[37] C. K. Keat, K. S. Leong, and L. K. Tee, “An experimental investigation of piezoelectric P(VDF-TrFE) thick film on flexible substrate as energy harvester,” IOP Conf. Ser. Mater. Sci. Eng., vol. 210, p. 012078, 2017.
[38] D. Chen, T. Sharma, and J. X. J. Zhang, “Mesoporous surface control of PVDF thin films for enhanced piezoelectric energy generation,” Sensors Actuators, A Phys., vol. 216, pp. 196–201, 2014.
[39] Y. Cho et al., “Enhanced energy harvesting based on surface morphology engineering of P (VDF-TrFE) film,” Nano Energy, vol. 16, pp. 524–532, 2015.