研究生: |
林暉皓 Hui-Hao Lin |
---|---|
論文名稱: |
果蠅腦之蕈狀體神經網路圖譜定位 Mapping Mushroom Body Circuits in the Drosophila Brain |
指導教授: |
江安世
Ann-Shyn Chiang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 英文 |
論文頁數: | 44 |
中文關鍵詞: | 神經網路 |
外文關鍵詞: | circuits |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
了解腦的功能和在應用臨床神經科學,三維立體影像的腦圖譜和腦內結構位置並且了解神經網路如何的連結是非常重要的。為了要概括了解腦神經的圖譜和行為功能之間的關係,一個高解析度的三維影像是一個重要的工具。在昆蟲腦,蕈狀體 (mushroom body)是研究較完整的一個部位。很多研究指出,蕈狀體扮演著參與嗅覺、視覺的學習記憶和交配行為功能的重要角色。在本研究中主要是以果蠅 (Drosophila melanogaster)當實驗動物模式,建構一個高解析度和蕈狀體相關連的神經網路圖譜 (neuronal circuits)。利用NBD-ceramide 和 DID這一類的化學膜染劑,進行對比染色 (counterstain)幫助我們可以標定出腦內特定的區域,進而配合Focusclear和共軛焦顯微鏡 (confocal microscopy),三維影像套合 (3D montage)和Amira® 3.0 軟體,獲得高解析度果蠅腦的三維影像。再利用影像平均軟體 (model average software),建構一個標準的蕈狀體並且利用warp的技術將來自不同個體的神經網路放進標準蕈狀體。在本實驗中,我們計算出三維影像的標準蕈狀體 (standard mushroom body)並記錄其生長曲線,以這標準的蕈狀體當成模板再利用warp的技術將不同個體的神經網路套入標準蕈狀體,進而建構出一個高解析度的神經網路的圖譜。這一個高解析度的神經網路圖譜將會幫助我們更進一步的了解蕈狀體在果蠅腦內所扮演的角色。
In order to understand the brain functions and apply to clinical neuroscience, the three-dimensional knowledge of the topography and localization of brain structures and how neuronal circuits to connection is very important. In insect, mushroom body is one of the best-studied compartments brain. Many studies indicated that mushroom body is the center for higher-order functions including olfactory learning, courtship behavior and visual learning. The broad understanding of the relationship between the map and behavior functions requires the adequate tools for high-resolution three-dimensional image. In this study, the fly brain was counterstained with a membrane probe-NBD ceramide and DID to l l neuropils, cleared by FocusClear and scanned by confocal microscopy to get a 3D high resolution image of fly brain. By the help of the model average software and warp technique of Amira® 3.0, a standard mushroom body was built and the images of the neuronal circuits from different samples were warped into the virtual standard mushroom body. As a result, a 3D image of standard mushroom body and a growing curve of the mushroom body in the developmental stage were presented and the neuronal circuits which associated with mushroom body from different samples were combined together. These high resolution circuit maps will help to understand how the neuronal circuits work and the role of mushroom body plays in the Drosophila.
1. Allen, M. et al. Spatial Representation of the Glomerular Map in the Drosophila Protocerebrum. Cell. 109, 229-241 (2002).
2. Crittenden, J., Kalderon, D. □ Davis, R. L. Tripartite mushroom body architecture revealed by antigenic markers. Learn. Mem. 5, 38-51 (1998).
3. Christopher, A., Scully, A. L. □ John, B. Derailedis required for muscle attachment site selection in Drosophila. Development. 122, 2761-2767 (1996).
4. Callahan, C. A., Scully, A. L. □ Thomas, J. B. Control of neuronal pathway selection by a Drosophila receptor protein-tyrosine kinase family member. Nature. 376, 171-174 (1995).
5. Dubnau, J., Kitamoto, T. □ Tully, T. Disruption of neurotransmission in Drosophila mushroom body blocks retrieval on different aspects of but not acquisition of memory. Nature. 411, 476–480 (2001).
6. Davidson D. et al. The mouse atlas and graphical gene-expression database.
Semin Cell Dev Biol. 8, 509-17 (1997)
7. Davis, R. L. Physiology and biochemistry of Drosophila learning mutants. Physiol. Rev. 76, 299-317 (1996).
8. Durst C. et al. Development and experience lead to increased volume of subcompartments of the honeybee mushroom body. Behav Neural Biol. 62 259 –263 (1994).
9. Dura, J. M. et al. The drosophila learning and memory gene linotte encodes a putative receptor tyrosin kinase homologous to the human RYK gene product. FEBS letters. 370, 250-254 (1995).
10. De Belle, J.S., □ Heisenberg, M. Associative learning in Drosophila abolished by chemical ablation of mushroom bodies. Science. 263, 692–695 (1994)
11. Drain, P., Folkers, E. □ Quinn, W.G. cAMP-dependent protein kinase and the disruption of learning in transgenic flies. tests when appropriate. Neuron. 6, 71–82 (1991).
12. Fahrbach, S.E. et al. Experience-expectant plasticity in the mushroom bodies of the honeybee. Learn Mem. 5, 115–123 (1998).
13. Fox, P. T. & Lancaster, J. L. Neuroscience on the Net. Science 226, 994–996 (1994).
14. Han, P.-L., Reed, R.R., □ Davis, R.L. Preferential expression of the Drosophila rutabaga gene in mushroom body ,neural centers for learning in insects. Neuron. 9, 619–627 (1992).
15. Heisenberg, M. What do the mushroom bodies do for the insect brain? An introduction. Learn. Mem. 5, 1-10 (1998).
16. Heisenberg, M., Heusipp, M. □ Wanke, C. Structural plasticity in the Drosophila brain. J. Neurosci. 15, 1951-1960 (1995).
17. Ito, K. □ Hotta, Y. Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Dev. Biol. 149, 134-148. (1992).
18. Ito, K., Hiromi, Y. □ Yamamoto, D. The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurons and glial cells. Development. 124, 761-771 (1997).
19. Ito, K., Yamamoto, D. □ Strausfeld, N.J. The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster. Learn. Mem. 5, 52–77 (1998).
20. Kenyon, F. C. The brain of the bee. A preliminary contribution to the morphology of the nervous system of the arthropoda. J. Comp. Neurol. 6, 133-210 (1896).
21. Lee, T. et al. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron. 22, 451-461 (1999).
22. Lee, T. et al. Development of the Drosophila mushroom bodies: Sequential generation of three distinct types of neurons from a neuroblast. Development. 126, 4065-4076 (1999).
23. Levin, L.R., Feinstein, P.G. □ Davis, R.L. The Drosophila learning and memory gene rutabaga encodes a Ca 2 /calmodulin-responsive adenylyl cyclase. Cell. 68, 479–489 (1992).
24. Marin, E. C., Zhu, H. □ Luo, L. Representation of the glomerular olfactory map in the Drosophila brain. Cell. 109,243-255 (2002).
25. Sea, E., et al. The Role of Drosophila Mushroom body Signaling in Olfactory Memory. Science. 293, 1330-1333 (2001).
26. Skoulakis, E.M.C. □ Davis, R.L. Olfactory learning deficits in mutants for Leonardo, a Drosophila gene encoding a 14–3-3 protein. Neuron. 17, 931–944 (1996).
27. Stocker, R. F., Borst, A. □ Fischbach, K.F. Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res. 262, 9-34 (1990).
28. Stocker, R.F. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res. 275, 3–26 (1994).
29. Technau, G.M. Fiber number in the mushroom bodies of adult Drosophila melanogaster depends on age, sex, and experience. J. Neurogenet. 1, 113–126 (1984)
30. Withers, G.S. et al. Selective neuroanatomical plasticity and division of labour in the honeybee. Nature. 364, 238 –240 (1993).
Withers, G.S. et al. Effects of experience and juvenile hormone on the organization of the mushroom bodies of honey bees. J Neurobiol. 26, 130 –144 (1995).
31. Warr, C., Kim, J. □ Carlson, J. R. Olfaction in Drosophila: coding, genetics
and e-genetics. Chem. Senses. 26, 201-206 (2001).
32. Wong, A. M., Wang, J. W. □ Axel, R. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell. 109, 229-241 (2002).
33. Chen, Y. C., et al. Two-Level Model Averaging Techniques in Drosophila Brain Imaging, IEEE 2002 International Conference on Image Processing (ICIP-2002), Rochester, New York. Sept, 22-25, (2002)
34. Zars T., et al. Localization of a Short -Term Memory in Drosophila. Scinece. 288, 672-675 (2000).
35. Zhu, S., et al. Development of the Drosophila mushroom bodies:elaboration, remodeling, and spatial organization of dendrites in the calyx. Development. 13, 2603-2610 (2003).