研究生: |
溫少瑄 Wen, Shao-Hsuan |
---|---|
論文名稱: |
Sulbactam 增加doxorubicin對於乳癌細胞毒殺性之探討 Sulbactam-enhanced cytotoxicity of doxorubicin in breast cancer cells |
指導教授: |
李寬容
Lee, Kuan‑Rong |
口試委員: |
陳令儀
Chen, Lin-Yi 陳德禮 Chen, Te-Li 高茂傑 Kao, Mou-Chieh 李秀珠 Lee, Shiow-Ju |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 93 |
中文關鍵詞: | 抑酶靈 、乳癌 、ABC 傳送子 、艾黴素 、蛋白質體學 、抑制劑 |
外文關鍵詞: | Sulbactam, Breast cancer, ABC transporters, Doxorubicin, Proteomics, Inhibitors |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多重抗藥性(Multidrug resistance, MDR)一直是乳癌治療上的一個主要的障礙。而造成多重抗藥性的機轉主要來自於依賴ATP的藥物外排泵(ATP-binding cassette (ABC) transporter proteins)活性的增加或是過度表現,造成藥物在細胞內的濃度下降。對於doxorubicin的抗藥性就是例子之一。Sulbactam是一種β-內醯胺酶(β-lactamase)的抑制劑,通常會和β-內醯胺合併使用來治療細菌感染。Sulbactam也可單獨用來治療鲍氏不動桿菌(Acinetobacter baumannii)造成的感染,其機轉是透過抑制鲍氏不動桿菌ABC transporter和轉錄相關蛋白的表現。這是第一篇報導sulbactam在哺乳類細胞上的效果的研究。我們以乳癌細胞為模型系統來測試sulbactam是否會影響癌細胞。我們以MTT來測試doxorubicin外加sulbactam對乳癌細胞存活的影響。以液相層析串聯式質譜儀來測定乳癌細胞在doxorubicin單獨作用和sulbactam合併doxorubicin作用過後有改變的蛋白。接著以即時聚合酶鏈鎖反應分析以doxorubicn外加或沒外加sulbactam處理過後,ABC transporter的mRNA表現量的差異。並以doxorubicin排出實驗測量doxrubicin的排出是否有受到sulbactam的影響。最後以電腦模擬分析sulbactam和ABC transporter的ATP接合位的互動。以上實驗結果顯示,sulbactam增加了doxorubicin對乳癌細胞的毒性。Doxorubicin和sulbactam合併作用會使ABC transporter、和轉錄及轉譯起始相關的蛋白表現量都減少。ABC transporter的mRNA表現量在doxorubicin及sulbactam的處理過後也下降了。Doxorubicin排出實驗顯示sulbactam處理過後的細胞,doxorubicin的排出會被抑制。電腦模擬的結果則顯示sulbactam會和ATP競爭結合到ABC transporter的ATP接合部位,進而抑制ABC transporter的功能。總而言之,Sulbactam和doxorubicin合併使用能增加doxorubicin對於乳癌細胞的毒殺性。這樣的結果是藉由抑制和轉錄和轉譯相關的蛋白和ABC transporters的表現,並抑制ABC transporters的功能使doxorubicin在細胞內的時間延長,此作用可能是藉由sulbactam和ATP競爭ABC transporter的ATP-docking sites。因此doxorubicin和sulbactam合併使用可以降低doxorubicin施用的濃度,進而避免doxorubicin的副作用。
Background: Multidrug resistance (MDR) is a major obstacle in breast cancer treatment. The predominant mechanism underlying MDR is an increase in the activity of adenosine triphosphate (ATP)-dependent drug efflux transporters. Sulbactam, a β-lactamase inhibitor, is generally combined with β-lactam antibiotics for treating bacterial infections. However, sulbactam alone can be used to treat Acinetobacter baumannii infections because it inhibits the expression of ATP-binding cassette (ABC) transporter proteins. This is the first study to report the effects of sulbactam on mammalian cells.
Methods: We used the breast cancer cell lines as a model system to determine whether sulbactam affects cancer cells. The cell viabilities in the present of doxorubicin with or without sulbactam were measured by MTT assay. Protein identities and the changes in protein expression levels in the cells after sulbactam and doxorubicin treatment were determined using LC-MS/MS. Real-time reverse transcription polymerase chain reaction was used to analyze the change in mRNA expression levels of ABC transporters after treatment of doxorubicin with or without sulbactam.. The efflux of doxorubicin was measures by the doxorubicin efflux assay. Computer simulation was used to analyze the interaction of sulbactam and the ATP-docking sites of ABC transporter proteins.
Results: MTT assay revealed that sulbactam enhanced the cytotoxicity of doxorubicin in breast cancer cells. The results of proteomics showed that ABC transporter proteins and proteins associated with the transcription and initiation of translation were reduced. The mRNA expression levels of ABC transporters were also decreased when treated with doxorubicin and sulbactam. The doxorubicin efflux assay showed that sulbactam treatment inhibited doxorubicin efflux. The computer simulation showed that sulbactam may compete with ATP for the ATP-docking sites of ABC transporter proteins, thus inhibiting their function.
Conclusions: The combination of sulbactam and doxorubicin can enhance the cytotoxicity of doxorubicin in the breast cancer cells by inhibiting the expressions of transcription and initiation of translation associated proteins and ABC transporter proteins, reducing the function of ABC transporters to retain doxorubicin in the cells, and competing with ATP for the ATP-docking sites of the ABC transporter proteins to enhance the cytotoxicity of doxorubicin in breast cancer cells. Therefore, co-treatment of doxorubicin and sulbactam may decrease the prescribed dose of doxorubicin to avoid the adverse effects of doxorubicin.
References
1. Global Burden of Disease Cancer, C., et al., The Global Burden of Cancer 2013. JAMA Oncol, 2015. 1(4): p. 505-27.
2. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2015. CA Cancer J Clin, 2015. 65(1): p. 5-29.
3. Polyak, K., Heterogeneity in breast cancer. J Clin Invest, 2011. 121(10): p. 3786-8.
4. Rivenbark, A.G., S.M. O'Connor, and W.B. Coleman, Molecular and cellular heterogeneity in breast cancer: challenges for personalized medicine. Am J Pathol, 2013. 183(4): p. 1113-1124.
5. Martin, H.L., L. Smith, and D.C. Tomlinson, Multidrug-resistant breast cancer: current perspectives. Breast Cancer (Dove Med Press), 2014. 6: p. 1-13.
6. Duffy, M.J., et al., Clinical use of biomarkers in breast cancer: Updated guidelines from the European Group on Tumor Markers (EGTM). Eur J Cancer, 2017. 75: p. 284-298.
7. Nami, B., H. Maadi, and Z. Wang, Mechanisms Underlying the Action and Synergism of Trastuzumab and Pertuzumab in Targeting HER2-Positive Breast Cancer. Cancers (Basel), 2018. 10(10).
8. Liu, P., et al., Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells. Br J Cancer, 2013. 109(7): p. 1876-85.
9. Collignon, J., et al., Triple-negative breast cancer: treatment challenges and solutions. Breast Cancer (Dove Med Press), 2016. 8: p. 93-107.
10. Diana, A., et al., Triple-Negative Breast Cancers: Systematic Review of the Literature on Molecular and Clinical Features with a Focus on Treatment with Innovative Drugs. Curr Oncol Rep, 2018. 20(10): p. 76.
11. Kucukzeybek, B.B., et al., Prognostic significance of androgen receptor expression in HER2-positive and triple-negative breast cancer. Pol J Pathol, 2018. 69(2): p. 157-168.
12. Pluchino, K.M., et al., Collateral sensitivity as a strategy against cancer multidrug resistance. Drug Resist Updat, 2012. 15(1-2): p. 98-105.
13. Gonzalez-Angulo, A.M., F. Morales-Vasquez, and G.N. Hortobagyi, Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol, 2007. 608: p. 1-22.
14. Musgrove, E.A. and R.L. Sutherland, Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer, 2009. 9(9): p. 631-43.
15. Clarke, R., R.B. Dickson, and N. Brunner, The process of malignant progression in human breast cancer. Ann Oncol, 1990. 1(6): p. 401-7.
16. Sun, W.L., et al., Autophagy facilitates multidrug resistance development through inhibition of apoptosis in breast cancer cells. Neoplasma, 2015. 62(2): p. 199-208.
17. Goler-Baron, V. and Y.G. Assaraf, Structure and function of ABCG2-rich extracellular vesicles mediating multidrug resistance. PLoS One, 2011. 6(1): p. e16007.
18. Gonen, N. and Y.G. Assaraf, Antifolates in cancer therapy: structure, activity and mechanisms of drug resistance. Drug Resist Updat, 2012. 15(4): p. 183-210.
19. Ifergan, I., G.L. Scheffer, and Y.G. Assaraf, Novel extracellular vesicles mediate an ABCG2-dependent anticancer drug sequestration and resistance. Cancer Res, 2005. 65(23): p. 10952-8.
20. Livney, Y.D. and Y.G. Assaraf, Rationally designed nanovehicles to overcome cancer chemoresistance. Adv Drug Deliv Rev, 2013. 65(13-14): p. 1716-30.
21. Raz, S., et al., Severe hypoxia induces complete antifolate resistance in carcinoma cells due to cell cycle arrest. Cell Death Dis, 2014. 5: p. e1067.
22. Zhitomirsky, B. and Y.G. Assaraf, Lysosomes as mediators of drug resistance in cancer. Drug Resist Updat, 2016. 24: p. 23-33.
23. Szakacs, G., et al., Targeting multidrug resistance in cancer. Nat Rev Drug Discov, 2006. 5(3): p. 219-34.
24. Higgins, C.F., Multiple molecular mechanisms for multidrug resistance transporters. Nature, 2007. 446(7137): p. 749-57.
25. Wang, H.Y., Z. Cheng, and C.C. Malbon, Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Lett, 2003. 191(2): p. 229-37.
26. Colmegna, B., L. Morosi, and M. D'Incalci, Molecular and Pharmacological Mechanisms of Drug Resistance:An Evolving Paradigm. Handb Exp Pharmacol, 2017.
27. Chaney, S.G. and A. Sancar, DNA repair: enzymatic mechanisms and relevance to drug response. J Natl Cancer Inst, 1996. 88(19): p. 1346-60.
28. Velaei, K., et al., NFkappaBP65 transcription factor modulates resistance to doxorubicin through ABC transporters in breast cancer. Breast Cancer, 2017. 24(4): p. 552-561.
29. Wu, M., et al., Targeting ETS1 with RNAi-based supramolecular nanoassemblies for multidrug-resistant breast cancer therapy. J Control Release, 2017. 253: p. 110-121.
30. Wallace, D.C., Mitochondria and cancer. Nat Rev Cancer, 2012. 12(10): p. 685-98.
31. Li, W., et al., Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat, 2016. 27: p. 14-29.
32. Wilkens, S., Structure and mechanism of ABC transporters. F1000Prime Rep, 2015. 7: p. 14.
33. Domenichini, A., A. Adamska, and M. Falasca, ABC transporters as cancer drivers: Potential functions in cancer development. Biochim Biophys Acta Gen Subj, 2018. 1863(1): p. 52-60.
34. Fletcher, J.I., et al., ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer, 2010. 10(2): p. 147-56.
35. Kathawala, R.J., et al., The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Updat, 2015. 18: p. 1-17.
36. Jones, P.M. and A.M. George, The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci, 2004. 61(6): p. 682-99.
37. Noguchi, K., K. Katayama, and Y. Sugimoto, Human ABC transporter ABCG2/BCRP expression in chemoresistance: basic and clinical perspectives for molecular cancer therapeutics. Pharmgenomics Pers Med, 2014. 7: p. 53-64.
38. Clarke, R., F. Leonessa, and B. Trock, Multidrug resistance/P-glycoprotein and breast cancer: review and meta-analysis. Semin Oncol, 2005. 32(6 Suppl 7): p. S9-15.
39. Dean, M., ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia, 2009. 14(1): p. 3-9.
40. Borst, P., et al., A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst, 2000. 92(16): p. 1295-302.
41. Bao, L., et al., Increased expression of P-glycoprotein is associated with doxorubicin chemoresistance in the metastatic 4T1 breast cancer model. Am J Pathol, 2011. 178(2): p. 838-52.
42. Kunicka, T. and P. Soucek, Importance of ABCC1 for cancer therapy and prognosis. Drug Metab Rev, 2014. 46(3): p. 325-42.
43. Futscher, B.W., et al., Verapamil suppresses the emergence of P-glycoprotein-mediated multi-drug resistance. Int J Cancer, 1996. 66(4): p. 520-5.
44. Akimoto, H., et al., Effect of verapamil on doxorubicin cardiotoxicity: altered muscle gene expression in cultured neonatal rat cardiomyocytes. Cancer Res, 1993. 53(19): p. 4658-64.
45. Szakacs, G., et al., Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell, 2004. 6(2): p. 129-37.
46. Arcamone, F., et al., Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Reprinted from Biotechnology and Bioengineering, Vol. XI, Issue 6, Pages 1101-1110 (1969). Biotechnol Bioeng, 2000. 67(6): p. 704-13.
47. Momparler, R.L., et al., Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res, 1976. 36(8): p. 2891-5.
48. Wang, S., et al., Activation of nuclear factor-kappaB during doxorubicin-induced apoptosis in endothelial cells and myocytes is pro-apoptotic: the role of hydrogen peroxide. Biochem J, 2002. 367(Pt 3): p. 729-40.
49. Tacar, O., P. Sriamornsak, and C.R. Dass, Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol, 2013. 65(2): p. 157-70.
50. Meredith, A.M. and C.R. Dass, Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. J Pharm Pharmacol, 2016. 68(6): p. 729-41.
51. Taylor, C.W., et al., Different mechanisms of decreased drug accumulation in doxorubicin and mitoxantrone resistant variants of the MCF7 human breast cancer cell line. Br J Cancer, 1991. 63(6): p. 923-9.
52. Wind, N.S. and I. Holen, Multidrug resistance in breast cancer: from in vitro models to clinical studies. Int J Breast Cancer, 2011. 2011: p. 967419.
53. Williams, J.D., beta-Lactamase inhibition and in vitro activity of sulbactam and sulbactam/cefoperazone. Clin Infect Dis, 1997. 24(3): p. 494-7.
54. Rafailidis, P.I., E.N. Ioannidou, and M.E. Falagas, Ampicillin/sulbactam: current status in severe bacterial infections. Drugs, 2007. 67(13): p. 1829-49.
55. Sandanayaka, V.P. and A.S. Prashad, Resistance to beta-lactam antibiotics: structure and mechanism based design of beta-lactamase inhibitors. Curr Med Chem, 2002. 9(12): p. 1145-65.
56. Adnan, S., et al., Ampicillin/sulbactam: its potential use in treating infections in critically ill patients. Int J Antimicrob Agents, 2013. 42(5): p. 384-9.
57. Penwell, W.F., et al., Molecular mechanisms of sulbactam antibacterial activity and resistance determinants in Acinetobacter baumannii. Antimicrob Agents Chemother, 2015. 59(3): p. 1680-9.
58. Noguchi, J.K. and M.A. Gill, Sulbactam: a beta-lactamase inhibitor. Clin Pharm, 1988. 7(1): p. 37-51.
59. Papp-Wallace, K.M., et al., Early insights into the interactions of different beta-lactam antibiotics and beta-lactamase inhibitors against soluble forms of Acinetobacter baumannii PBP1a and Acinetobacter sp. PBP3. Antimicrob Agents Chemother, 2012. 56(11): p. 5687-92.
60. Lin, C.H., et al., Bactericidal effect of sulbactam against Acinetobacter baumannii ATCC 19606 studied by 2D-DIGE and mass spectrometry. Int J Antimicrob Agents, 2014. 44(1): p. 38-46.
61. van Veen, H.W., et al., A bacterial antibiotic-resistance gene that complements the human multidrug-resistance P-glycoprotein gene. Nature, 1998. 391(6664): p. 291-5.
62. ter Beek, J., A. Guskov, and D.J. Slotboom, Structural diversity of ABC transporters. J Gen Physiol, 2014. 143(4): p. 419-35.
63. Shevchenko, A., et al., In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc, 2006. 1(6): p. 2856-60.
64. Levin, A.S., Multiresistant Acinetobacter infections: a role for sulbactam combinations in overcoming an emerging worldwide problem. Clin Microbiol Infect, 2002. 8(3): p. 144-53.
65. Pang, B., et al., Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin. Nat Commun, 2013. 4: p. 1908.
66. JEAN-PIERRE GILLET1, JOSE SCHNEIDER2,*, VINCENT BERTHOLET3, FRANÇOISE DE LONGUEVILLE3, JOSE REMACLE1 and THOMAS EFFERTH4, Microarray Expression Profiling of ABC Transporters in Human Breast Cancer. Cancer Genomics & Proteomics, 2006. 3(2).
67. Jacobs, H., et al., The semisynthetic flavonoid monoHER sensitises human soft tissue sarcoma cells to doxorubicin-induced apoptosis via inhibition of nuclear factor-kappaB. Br J Cancer, 2011. 104(3): p. 437-40.
68. Chappell, W.H., et al., Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget, 2011. 2(3): p. 135-64.
69. Li, X., et al., Differential responses to doxorubicin-induced phosphorylation and activation of Akt in human breast cancer cells. Breast Cancer Res, 2005. 7(5): p. R589-97.
70. White, S.J., et al., Doxorubicin generates a proapoptotic phenotype by phosphorylation of elongation factor 2. Free Radic Biol Med, 2007. 43(9): p. 1313-21.
71. Kurz, E.U., P. Douglas, and S.P. Lees-Miller, Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J Biol Chem, 2004. 279(51): p. 53272-81.
72. Panaretakis, T., et al., Doxorubicin requires the sequential activation of caspase-2, protein kinase Cdelta, and c-Jun NH2-terminal kinase to induce apoptosis. Mol Biol Cell, 2005. 16(8): p. 3821-31.
73. Stolarczyk, E.I., C.J. Reiling, and C.M. Paumi, Regulation of ABC transporter function via phosphorylation by protein kinases. Curr Pharm Biotechnol, 2011. 12(4): p. 621-35.
74. Xie, Y., et al., The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells. J Biol Chem, 2008. 283(6): p. 3349-56.
75. Yang, J.Y., et al., p-Glycoprotein ABCB5 and YB-1 expression plays a role in increased heterogeneity of breast cancer cells: correlations with cell fusion and doxorubicin resistance. BMC Cancer, 2010. 10: p. 388.
76. Balaji, S.A., et al., Role of the Drug Transporter ABCC3 in Breast Cancer Chemoresistance. PLoS One, 2016. 11(5): p. e0155013.
77. Ge, G., et al., Enhanced SLC34A2 in breast cancer stem cell-like cells induces chemotherapeutic resistance to doxorubicin via SLC34A2-Bmi1-ABCC5 signaling. Tumour Biol, 2016. 37(4): p. 5049-62.
78. Liu, Y., H. Peng, and J.T. Zhang, Expression profiling of ABC transporters in a drug-resistant breast cancer cell line using AmpArray. Mol Pharmacol, 2005. 68(2): p. 430-8.
79. Hlavac, V., et al., The expression profile of ATP-binding cassette transporter genes in breast carcinoma. Pharmacogenomics, 2013. 14(5): p. 515-29.
80. Wang, S., et al., ABCB5 promotes melanoma metastasis through enhancing NF-kappaB p65 protein stability. Biochem Biophys Res Commun, 2017. 492(1): p. 18-26.
81. Wilson, B.J., et al., ABCB5 maintains melanoma-initiating cells through a proinflammatory cytokine signaling circuit. Cancer Res, 2014. 74(15): p. 4196-207.
82. Frank, N.Y., et al., ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res, 2005. 65(10): p. 4320-33.
83. Wang, F., et al., Identification of a panel of genes as a prognostic biomarker for glioblastoma. EBioMedicine, 2018.
84. Kobayashi, M., et al., Wnt-beta-catenin signaling regulates ABCC3 (MRP3) transporter expression in colorectal cancer. Cancer Sci, 2016. 107(12): p. 1776-1784.
85. Carrasco-Torres, G., et al., The transmembrane transporter ABCC3 participates in liver cancer progression and is a potential biomarker. Tumour Biol, 2016. 37(2): p. 2007-14.
86. Zhao, Y., et al., ABCC3 as a marker for multidrug resistance in non-small cell lung cancer. Sci Rep, 2013. 3: p. 3120.
87. Qi, J., et al., Sulbactam Protects Hippocampal Neurons Against Oxygen-Glucose Deprivation by Up-Regulating Astrocytic GLT-1 via p38 MAPK Signal Pathway. Front Mol Neurosci, 2018. 11: p. 281.
88. Jin, W., et al., Down-regulation of the P-glycoprotein relevant for multidrug resistance by intracellular acidification through the crosstalk of MAPK signaling pathways. Int J Biochem Cell Biol, 2014. 54: p. 111-21.
89. Rana, M., et al., IRAK regulates macrophage foam cell formation by modulating genes involved in cholesterol uptake and efflux. Bioessays, 2016. 38(7): p. 591-604.
90. Uchida, Y., et al., Multichannel liquid chromatography-tandem mass spectrometry cocktail method for comprehensive substrate characterization of multidrug resistance-associated protein 4 transporter. Pharm Res, 2007. 24(12): p. 2281-96.